БОЛЬШАЯ НАУЧНАЯ БИБЛИОТЕКА  
рефераты
Добро пожаловать на сайт Большой Научной Библиотеки! рефераты
рефераты
Меню
Главная
Банковское дело
Биржевое дело
Ветеринария
Военная кафедра
Геология
Государственно-правовые
Деньги и кредит
Естествознание
Исторические личности
Маркетинг реклама и торговля
Международные отношения
Международные экономические
Муниципальное право
Нотариат
Педагогика
Политология
Предпринимательство
Психология
Радиоэлектроника
Реклама
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Физика
Философия
Финансы
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Сельское хозяйство
Социальная работа
Сочинения по литературе и русскому языку
Товароведение
Транспорт
Химия
Экология и охрана природы
Экономика и экономическая теория

Финансовые расчеты

Финансовые расчеты

Сибирский институт финансов и банковского дела

Кафедра: Финансы и кредит

Контрольная работа

по дисциплине: Финансовые расчеты

Вариант №3

Выполнил: студентка группы СЗ-96

Бурдюгова О.В.

Проверил: кандидат экономических наук

Текутьев Владимир Евгеньевич

Новосибирск 1998 г.

Раздел 1. Проценты

Задача №1

Ссуда в размере 1,000 д. е. предоставлена 5 февраля и должна быть

погашена 5 мая с уплатой простых процентов по годовой ставке 70%. Какую

сумму должен возвратить заемщик при начислении:

1. обыкновенных процентов с приближенным числом дней ссуды;

2. обыкновенных процентов с точным числом дней ссуды;

3. точных процентов;

Решение

Дано

P = 1,000

S = P(1+in)

i = 0.7

n = t/T

S = ?

А) метод обыкновенных процентов с приближенным числом дней:

t = 24+30+30+4 = 88

T = 360

n = 0.244 1

S = 1,000(1+0.7*0.244) = 414.8 д.е

Б) метод обыкновенных процентов с точным числом дней:2

t = 24+31+30+4 = 89

T = 360

n = 0.247

S = 1,000(1+0.7*0.247) = 419.9 д.е.

В) метод точных процентов:

t = 24+31+30+4 = 89

T = 365

n = 0.244

S = 1,000(1+0.7*0.244) = 414.8 д.е.

1 Все вычисления в данной работе производятся до 3 –го знака после запятой,

если другое не оговорено отдельно.

2 Во всех задачах в данной работе при вычислений n = t/T используется

метод обыкновенных процентов с точным числом дней, если другое не оговорено

условием задачи.

Задача №2

Вклад в сбербанк в сумме 200,000 рублей помещен под 70% годовых.

Рассчитать сумму вклада и начисленные проценты:

4. через 7 месяцев;

5. через 2.5 года.

Чему равны множители наращения в обоих случаях?

Решение

Дано

P = 200,000 руб. 1) S = P(1+in)

n1 = 7/12 года I = S - P

n2 = 2.5 года qs = S/P

i = 0.7 2) S = P(1+i)na

(1+nbi)

S-?, I-?, qs-?, qc-? где na + nb = n

na – целая часть периода

nb – дробная часть

периода

1) при n < 1 начисляются простые проценты

S = 200,000(1+0.583*0.7) = 221620д.е.

I = 221620 – 200,000 = 21620

qs = 221620/200,000 = 1.108

2) если n > 1 и не целое число то проценты начисляются по

комбинированному способу

S = 200,000(1+0.7)2 (1+0.7*0.5) = 491300 д.е.

I = 491300 – 200,000 = 291300

qc = 491300/200,000 = 2.457

Задача №3

Выразить при помощи эффективной ставки доходность следующих операций:

6. некоторая сумма помещается на 1 – месячный депозит под 80% годовых;

7. некоторая сумма помещается на 3 – месячный депозит под 90 %

годовых.

Какая из двух операций эффективней?

Дано

j1 = 80% ; m1 = 12 ; n1 = 1/12

j2 = 90% ; m2 = 4 ; n2 = 0.25 ie = (1+j/m)mn - 1

Вычислим периодическую ставку при 1- месячном и 3-х месячном

депозитах:

j1/m1 = 80/12 = 6.667% - на месячном депозите

j2/m2 = 90/4 = 22.5% - на 3-х месячном депозите

Непосредственное сравнение 6.667% за 1 месяц и 22.5% за 3 месяца не

позволяет сравнить эффективность этих операций. Поэтому для сравнения

эффективности этих операций вычислим годовую эффективную ставку для каждой

из них:

ie = (1+0.8/12)12 – 1 = 1.17 = 117% - для 1 - месячного депозита

ie = (1+0.9/4)4 – 1 = 1.252 = 125.2% - для 3-х месячного депозита

Сравнив годовые эффективные ставки мы видим, что операция с

одномесячным депозитом эффективнее операции с 3-х месячным депозитом при

данных процентных ставках.

Задача №4

Вексель на сумму 1,200,000 д.е. со сроком уплаты 1 ноября учитывается

в банке 1 сентября по учетной ставке 28 %. Какую сумму получит владелец

векселя (без уплаты комиссионных )? Какова величина дисконта?

Решение

Дано

S = 1,200,000 Sk = S - D

ds = 0.28 где Sk – сумма

полученная

Sk - ? , D - ? клиентом.

D = Snds

n = t/T

n = t/T = 61/360 = 0.169

D = 1,200,000*0.169*0.28 = 56,784 д.е.

Sk = 1,200,000 – 56784 = 1,143,216 д.е.

Задача№5

За какой срок при начислении сложных процентов удваивается сумма

вклада, помещенного под 25% годовых, если начисление производится:

8. ежегодно;

9. ежеквартально;

10. ежемесячно.

Решение

Дано

i = 0.25 1) S = P(1 + i)n , где S = 2P

n - ? 2) и 3) S = P(1 + j/m)mn

, где S = 2P

1) 2P = P(1+0.25)n ; сократим обе части уравнения на P

2 = 1.25n ; прологарифмируем обе части уравнения

lg2 = lg1.25n = nlg1.25

n = lg2/lg1.25 = 0.301/0.097= 3.103 года

сделаем проверку: пусть P = 1000 , тогда S = 1000(1+0.25)3.103 =

1998.535

при вычислении до 4-го или 5-го знака после запятой получатся более

точное значение n.

2) 2P = P(1+j/m)mn

2 = 1.0634n

lg2 = 4nlg1.063

n = lg2/(4lg1.063) = 2.84 года;

3) 2P = P(1+j/m)mn

2 = 1.02112n

n = lg2/(12lg1.021) = 2.79 года;

Задача №6

Какая годовая ставка сложных процентов обеспечивает удвоение вклада

до востребования за 1.17 года, если проценты начисляются:

11. ежеквартально;

12. ежемесячно;

13. ежедневно.

Решение

Дано

n = 1.17 S =

P(1+j/m)mn

j - ? где S = 2P

1) 2P = P(1+j/4)4.68

2 = (1+j/4)4.68

(21/4.68 - 1)m = j

j = 4(21/4.68 - 1) = 0.64 = 64%

2) 2P = P(1+j/12)14.04

j = 12(21/14.04 - 1) = 0.605 = 60.5%

3) 2P = P(1+j/360)427.05

j = 360(21/427.05 - 1) = 0.506 = 50.6% (вычисления производились

до 4-го знака после запятой).

Задача №7

По первоначальному варианту соглашения 1 сентября должно быть

уплачено 20,000,000 д.е., 1 декабря еще 10,000,000 д.е. Стороны

договорились объединить эти платежи одним. Консолидированный платеж должен

быть произведен 1 ноября. Какой должна быть его сумма, если соглашение

предусматривает начисление простых процентов из расчета 70% годовых.

Решение

Дано S1

S2

S1 = 20,000,000 1.09 1.10 1.11

1.12

S2 = 10,000,000

n1 = 2/12 S

n2 = 1/12

S - ? 1.11

S = S1(1+n1i) + S2(1+n2i)-1

S = 20,000,000(1+2/12*0.7) + 10,000,000(1+1/12*0.7)-1 =

31880000д.е.

Задача №8

Два векселя: на сумму 2000000 д.е. (срок платежа 10.09) и 5000000

д.е. (срок платежа 01.11) заменяются одним с пролонгацией до 15.11. Найти

сумму нового векселя, учетная ставка при пролонгации 28%.

Решение

Дано

S1 = 2,000,000 i = d(1-nd)-1

S2 = 5,000,000 n = t/T

d = 0.28 Snew = S1(1+n1i1) +

S2(1+n2i2)

Snew - ?

i1 = 0.28(1 - 65/360*0.28)-1 = 0.295

i2 = 0.28(1 - 14/360*0.28)-1 = 0.283

Snew = 2,000,000(1+0.053) + 5,000,000(1+0.011) = 7161555.1

д.е.

Задача №9

Прогноз годового индекса цен Ip= 2.2. Рассчитать соответствующее

значение уровня инфляции за год и в среднем за месяц (в процентах).

Решение

Дано

Ip = 2.2 ( = Ip – 1

( - ? (ср.мес =

Ipмес – 1

(ср.мес - ? Ipмес = Ip1/m

где m число месяцев в изучаемом

периоде.

( = 2.2 - 1 = 1.2 = 120%

Ipмес = 2.21/12 = 1.067

(ср.мес = 1.067 - 1 = 0.067 = 6.7%

Задача №10

Во сколько раз возрастут цены за год, если инфляция в среднем за

месяц ( в процентах) будет иметь значение (ср.мес = 4%.

Решение

Дано

(ср.мес = 0.04 (ср.мес =

Ip1/m - 1

Ip - ?

Ip1/m = 1+(ср.мес

Ip = (1+(ср.мес)m

Ip = (1+0.04)12 = 1.601 раз

Задача №11

Рассчитать реальную покупательную способность 1,000,000 руб.,

помещенных на 0.5 года под 108% годовых с ежеквартальным начислением, если

среднемесячный уровень инфляции ожидается 4%. Рассчитать реальную

доходность данной операции в виде годовой ставки.

Решение

Дано

P = 1,000,000 Sr = S/Ip

j = 1.08 ir = (1+j/m)mn/Ip

m = 4 Ip = ((ср.мес +1)m

n = 0.5

(ср.мес = 0.04

Sr - ?, ir - ?

Sr = 1,000,000(1+1.08/4)2 / 1.046 = 1275019.76руб.

Ir = [(1+1.08/4)4/1.0412] - 1 = 0.625 = 62.5%

Задача №12

Рассчитать значение номинальной ставки, которая обеспечит реальную

доходность операции, равную 30% годовых, от размещения некоторой суммы на

0.5 года с ежеквартальным начислением, если среднемесячный уровень инфляции

ожидается равным 4%.

Решение

Дано

ir = 0.3 j =

m[(Ip(1+ir))1/m -1 ]

(мес = 0.04 Ip = (( мес +

1)12

m = 4

j - ?

Ip = 1.0412 = 1.601

j = 4(1.6491/4-1 ) = 0.804 = 80.4%

Раздел 2. Финансовая рента (аннуитет)

Задача №13

Клиенту банка открыта кредитная линия на 2 года, дающая возможность в

начале каждого квартала получать по 5,000,000 д.е., на которые ежегодно

начисляются 12%. Рассчитать общую доходность к концу срока.

Решение

Дано

n = 2 S = R/p*[(1+i)n –1] /

[(1+i)1/p –1]

i = 0.12 S0= S(1+i)1/p

R/p = 5,,000,000

S0 - ?

S0 = 5,000,000(1.12 2 –1) / (1.12 0.25 –1 )1.12 0.25 =

5,000,000*8.759*1.029 = 45065055 д.е.

Задача №14

В 1984 году в индийском городе Бхопал произошла катастрофа на

химическом заводе американской компании ``Union Carbide``, приведшая к

гибели около 2000 человек. Компания предложила выплатить семьям погибших в

общей сложности 200 млн. $, производя эти выплаты ежегодно равными суммами

в течение 35 лет. Если бы индийская сторона приняла эти условия, то какую

сумму фирме следовало поместить в банк для обеспечения в течение указанного

срока ежегодных выплат, если на средства соответствующего фонда

ежеквартально начисляются проценты по ставке 12% годовых.

Решение

Дано

S = 200,000,000 S = R[(1+j/m)mn –1] /

[(1+j/m)m –1]

n = 35 A = R[1 – (1+j/m)-mn] /

[(1+j/m)m –1 ]

j = 0.12

m = 4

A-?

R = [(1+j/m)m –1] / [(1+j/m)mn –1] S = 0.126/61.692*200,000,000 =

411818.54

A = 411818.54* 0.984 / 0.126 = 3216106.6 $

Задача №15

Определить размер ежегодных взносов, вносимых в конце года, в

следующих случаях:

для создания через пять лет фонда в размере 50 млн. д.е.;

для погашения в течение 5-ти лет текущей задолженности, равной 50 млн. д.е.

Процентная ставка – 12%.

Решение

Дано

S = 50,000,000 S = R[(1+i)n –1] /

i

A = 50,000,000 A = R[1 – ( 1+i)-n

/ i

n = 5

i = 0.12

R - ?

Rs = Si / [(1+i)n –1] = 0.12*50,000,000 / (1.125 –1) = 8,000,000

/ 1.1 = 7874015.7 д.е

RA = Ai / [1 – (1+i)-n] = 8,000,000 / 0.5239 = 13856812 д.е

Задача №16

Определить срок, за который величина фонда составит 100 млн.

д.е., если взносы в фонд в сумме 10 млн. д.е. производятся:

16. в начале каждого года;

17. в конце каждого года.

Проценты на взносы начисляются ежеквартально по ставке 12%.

Решение

Дано

S = 100,000,000 S0 = R[(1+j/m)mn –1] / [(1+j/m)m –1]

* (1+j/m)m

R = 10,000,000 S = R[(1+j/m)mn –1] / [(1+j/m)m –1]

m = 4

j = 0.12

n - ?

1) 100,000,000 = 10,000,000(1.034n –1)1.126 / 0.126

1.26 / 1.126 = 1.126n –1

2.119 = 1.126n

lg2.119 = nlg1.126

n = 0.326 / 0.052 = 6.3 лет

2) 100,000,000 = 10,000,000(1.1699n –1) / 0.1699

1.699 =1.1699n –1

2.699 = 1.1699n

lg2.699 = nlg1.1699

n = 0.4312 / 0.0681 = 6.3 года

Задача №17

Определить срок, за который текущая задолженность в 100 млн. д.е.

может быть погашена ежегодными срочными уплатами по 25 млн. д.е., вносимыми

в конце года, если проценты на остаток долга начисляются ежеквартально по

ставке 12%. Рассчитать критическое значение величины срочной уплаты такое,

при котором платежи лишь погашают проценты, не позволяя погасить основной

долг.

Решение

Дано

A = 100,000,000 1) A = R[(1 – (1+j/m)-mn] /

[(1+j/m)m –1]

R = 25,000,000 2) S = P + I где I =

(1+j/m)mn

m = 4 P = A, n = 1

n - ?

1) A = R[(1 – (1+j/m)-mn] / [(1+j/m)m –1]

A[(1+j/m)m –1] / R = 1 – (1+j/m)-mn

A * 0.126 / R –1 = - (1.03-4)n

0.504 –1 = - 0.888n

-0.496 = -0.888n

lg0.496= nlg0.888

n = -0.305 / -0.052 = 5.6 года

2) S = 100,000,000 * 1.939 = 193900000

I = 93900000

Rкрит = Sкрит[(1+j/m)m –1] / [(1+j/m)mn]; где Sкрит = I

Rкрит = Sкрит = 93900000 д.е.

Раздел 3. Элементы прикладного финансового анализа.

Задача №18

Облигации ГКО номиналом 10,000 руб. продаются за 6 месяцев до

погашения по курсу 83. Рассчитать абсолютную величину дохода от покупки 10

облигаций и доходность инвестиций в них по схеме простых и сложных

процентов.

Решение

Дано

N = 10,000 K = P/N*100

K = 83 1Y = (N –

P)/P*365/t

t = 6 мес. Yc = (N/P)365/ t

–1

W10 - ?, Y - ?

P = KN/100 = 8,300

W10 = (N – P)*10 = (10,000 – 8,300)*10 = 17,000 руб.

Y = 1,700/8,300*2 = 0.41 = 41%

Yc = (10,000/8,300)2 –1 = 0.452 = 45.2%

Задача №19

Облигация номиналом 1000 д.е. погашается через 10 лет по номиналу.

Она приносит 8% ежегодного дохода. Рассчитать оценку, курс и текущую

доходность облигации для условной ставки сравнения 6%.

Решение

Дано

N = 1,000 P = Nq(1 – (1+i)-n) / i

+ N(1+i)-n

n = 10 K = P / N*100

q = 0.08 Y = Nq / P*100

i = 0.06

P - ?, K - ?, Y- ?

P = 1,000*0.08(1 – (1+0.06)-10) / 0.06 + 1,000*(1+0.08)-10 = 589.333

+ 558 = 1147.333 д.е.

K = 1000 / 1447*100 = 69.11

Y = 1000*0.08 / 1447*100 = 5.53%

1В задачах №18 и №19 3-го раздела t – число дней от приобретения ценной

бумаги до ее погашения.

Задача №20

Приведены исходные данные по трем инвестиционным проектам. Оценить

целесообразность выбора одного из них, если финансирование может быть

осуществлено за счет ссуды банка под 8% годовых.

Динамика денежных потоков

[pic]

Решение

Для обоснования целесообразности выбора одного из трех предложенных

инвестиционных проектов, произведем оценку их эффективности по следующим

показателям:

1. Чистая приведенная ценность NPV = [pic]Pt(1+i)-t –IC

где t – порядковый номер шага расчета;

Pt – t-й член потока чистых денег;

IC – величина инвестированного капитала;

T – число лет на которое делается расчет.

2. Индекс прибыльности PI = [pic]Pt(1+i)-t / IC

3. Срок окупаемости PP = tmin, при котором [pic]Pt(1+i)-t >

IC

4. Внутренняя ставка доходности IRR = i, при котором [pic]Pt(1+i)-t

= IC

IRR = i1+(i2 – i1)NVP(i1) / (NVP(i1) – NVP(i2); ( для вычисления

IRR возьмем значения i1 = 6%, i2 = 10%)

Речь о целесообразности проекта может быть только при следующих

значениях вышеперечисленных показателей: NPV >IC, PI >1, PP – чем меньше,

тем лучше, IRR=>i.

При других значениях этих показателей речь об эффективности инвестиционного

проекта не ведется. Расчеты всех вышеперечисленных показателей приведены в

таблице приложения 1. Из таблицы видно, что наиболее эффективным и более

стабильным является проект 2. О стабильности проекта так же можно судить по

диаграмме дисконтированного потока чистых денег.





17.06.2012
Большое обновление Большой Научной Библиотеки  рефераты
12.06.2012
Конкурс в самом разгаре не пропустите Новости  рефераты
08.06.2012
Мы проводим опрос, а также небольшой конкурс  рефераты
05.06.2012
Сена дизайна и структуры сайта научной библиотеки  рефераты
04.06.2012
Переезд на новый хостинг  рефераты
30.05.2012
Работа над улучшением структуры сайта научной библиотеки  рефераты
27.05.2012
Работа над новым дизайном сайта библиотеки  рефераты

рефераты
©2011