БОЛЬШАЯ НАУЧНАЯ БИБЛИОТЕКА  
рефераты
Добро пожаловать на сайт Большой Научной Библиотеки! рефераты
рефераты
Меню
Главная
Банковское дело
Биржевое дело
Ветеринария
Военная кафедра
Геология
Государственно-правовые
Деньги и кредит
Естествознание
Исторические личности
Маркетинг реклама и торговля
Международные отношения
Международные экономические
Муниципальное право
Нотариат
Педагогика
Политология
Предпринимательство
Психология
Радиоэлектроника
Реклама
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Физика
Философия
Финансы
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Сельское хозяйство
Социальная работа
Сочинения по литературе и русскому языку
Товароведение
Транспорт
Химия
Экология и охрана природы
Экономика и экономическая теория

Экологические проблемы военной деятельности в мирное время

Экологические проблемы военной деятельности в мирное время

2

План

Введение…………………………………………………………………………..3

1. Экологические проблемы сокращения ядерного оружия и обезвреживания радиоактивных отходов………………………………………4

2. Экологические проблемы уничтожения химического оружия……….16

Список литературы………………………………………………………………22

Введение

Вооруженные силы (ВО) являются составной и неотъемлемой частью государства. Их деятельность в мирное время должна проводиться в соответствии с государственной программой «Экологическая безопасность России» (1995г.) и международными договорами в области охраны ОПС. Поэтому важно установить нормирование антропогенных нагрузок на природу при осуществлении военной деятельности, чтобы не перейти ту черту, за которой восстановление нарушенных экологических систем станет невозможным. С другой стороны, перед ВС РФ ныне поставлена необычная задача: сыграть главную роль в деле уничтожения ядерного и химического оружия, подпадающего под действие международных конвенций.

1. Экологические проблемы сокращения ядерного оружия и обезвреживания радиоактивных отходов

К середине 80-х гг. прошлого века -- пику гонки ядерных воору-жений -- две сверхдержавы -- СССР и США накопили гигантские арсеналы атомного и термоядерного оружия: около 18 млрд т в тротиловом эквиваленте (А.М. Рябчиков, 1987 г.), что составляло более 3 т на каждого жителя планеты. В разгар самого острого противостояния число ядерных боеголовок достигло 56400, причем мощность каждой из них была в среднем в 25 раз больше бомбы, взорванной над Хиро-симой (около 13 кт). С учетом количества ядерного оружия еще трех держав (Франции, Англии и Китая) общая численность боеголовок составляла около 60 тыс.

Взрывная мощность накопленного ядерного оружия, по подсче-там специалистов, более чем в 1000 раз превышала взрывную мощ-ность всех боеприпасов, использованных во время второй мировой войны (около 7 млн т), а также боевых действий в Корее и Вьетнаме (более 10 млн т) вместе взятых. В ходе указанных войн, как извест-но, погибло 44 млн человек. Ныне признается, что три страны (США, Россия и Китай) обладают возможностью многократного взаимного гарантированного уничтожения.

Крайне опасным является то, что ядерное оружие медленно, но неуклонно расползается по планете. К пяти странам -- обладатель-ницам этого ОМП в 1998 г. присоединились Индия и Пакистан, проведшие серию испытаний. Есть все основания полагать, что об-ладают ядерным оружием Израиль, ЮАР и некоторые другие госу-дарства.

Испытания ядерного оружия: масштабы и экологические последствия. Из материалов ООН известно, что с 1945 по конец 1987 г. на нашей планете было проведено 1741 ядерное испытание, из них 899 взрывов осуществили США (по другим данным -- 919), 620 -- СССР, 151 -- Франция, 41 -- Англия и 30 -- КНР. К 1989 г. было проведено уже 1880 взрывов. При этом суммарная мощность ядерных взрывов, произведенных только в США, равнялась 11050 атомным бомбам, сбро-шенным на Хиросиму (В.В. Довгуша и др., 1995 г.). СССР в 1962 г. испытал на полигоне Новая Земля сверхмощную бомбу в 52 мегатон-ны. Напомним, общее количество взрывчатки, использованное в годы второй мировой войны, составило около 7 мегатонн.

В течение почти 40 лет ядерных испытаний на Земле происходило накопление радионуклидов. В биосферу было выброшено 12,5 т про-дуктов деления (при взрыве атомной бомбы над Хиросимой выдели-лось около 1 кг продуктов деления). Взрывы изменили равновесное содержание в атмосфере углерода 14С (с периодом полураспада 5730 лет) на 2,6%, а радиоактивного изотопа трития (с периодом полурас-пада 12,3 года) -- почти в 100 раз. Радиоактивное излучение на по-верхности Земли достигло к 1963 г. 2% сверх естественного фона. По данным станций наблюдения Госкомгидромета СССР, после испыта-ний на полигоне Новая Земля в 1961--1962 гг. уровни радиоактив-ных выпаданий в северных регионах страны возросли на 2--3 порядка по сравнению с 1960 г.

Динамика экологической деградации, масштабы возможных ядер-ных катастроф создают угрозу существованию человечества. Общеиз-вестно, что любое увеличение доз облучения влечет за собой возник-новение вредных мутаций, активизирует канцерогенез в нарождаю-щихся поколениях. Живой организм не адаптируется к радиации. Даже самые малые дозы ее сеют смерть. По официальным данным, онкологическая смертность среди оленеводов почти в 2 раза больше, чем в среднем по бывшему СССР, причем рак пищевода у коренных северян встречается в 15--20 раз чаще.

Естественный уровень мутаций (в отличие от других млекопитаю-щих) держит человека вблизи порога генетического вырождения. Удвоение числа мутаций приведет к гибели популяции в течение двух-трех поколений. Подсчитано, что человеку достаточно десятой доли от нижней смертельной дозы радиации, чтобы число мутаций удвои-лось. Существующий уровень загрязнений близок к этому пределу.

Отметим еще одно обстоятельство. Ядерные взрывы оказывают разрушающее влияние на стратосферный озоновый экран, который, как известно, защищает живые организмы от губительного действия коротковолнового ультрафиолетового излучения. Любопытные циф-ры по этому поводу привел журнал «Химия и жизнь» (1974, № 10): «...В стратосфере 10 частей диоксида азота N02 на миллиард ускоря-ют разложение озона в 10 тысяч раз, а семьсот сверхзвуковых пасса-жирских самолетов способны увеличить и без того опасную концент-рацию оксидов азота еще в 10 тысяч раз». И далее: «Во время взрыва только одной водородной бомбы в 1961 году в стратосферу попало больше NO, чем может создать воздушный флот из 500 лайнеров, летая целый год по семь часов в день».

Аварии на радиационных объектах. Какой бы совершенной ни была современная боевая техника, какие бы системы контроля и под-страховки не устанавливались, аварии и катастрофы невозможно ис-ключить. Согласно источникам, за последние 40 лет произошло не менее 130 серьезных аварий только американских бомбардировщи-ков и ракет, при которых была вероятность ядерного или даже термо-ядерного взрыва . Не миновала чаша сия и нашу страну. В результате аварий и катастроф на советских и российских АПЛ с 1968 по 2000 г. в Мировом океане оказалось 7 энергетических ядерных уста-новок. Всего же, по данным американского журна-ла «Тайме», на дне Мирового океана находится 7 затонувших АПЛ различной национальной принадлежности, 10 атомных реакторов и 50 ядерных (атомных и водородных) боеприпасов. Несомненно, что это представляет собой огромную потенциальную опасность.

Согласно японским исследованиям, в результате коррозии в мор-ской воде уже «потекла» водородная бомба, которую американцы по-теряли в Тихом океане. Выявлена повышенная радиоактивность и в районе, где лежат на дне погибшие АПЛ США «Трешер» и «Скорпи-он».

Чтобы подчеркнуть важность мероприятий, направленных на предот-вращение аварий на радиационно-опасных объектах, академик В. Кот-лов (1997 г.) указывает, что в РФ насчитывается таковых 34 тысячи. Из них 29 атомных энергоблоков, 113 научно-исследовательских реакторов, критических и подкритических сборок с ядерными материалами, 245 АПЛ, из которых большая часть выведена из эксплуатации, 12 атомных надвод-ных судов, тысячи тонн отработанного ядерного топлива, 3 млрд кюри временно захороненных РАО.

Чернобыльская катастрофа: трагический опыт и предупреждение. Серьезным предостережением человечеству явилась катастрофа, слу-чившаяся на Чернобыльской АЭС 26 апреля 1986 г. и нанесшая не-поправимый ущерб как множеству людей, так и развитию отечествен-ной атомной энергетики.

Во время плановых исследований реактор четвертого энергоблока, загруженный 180 т радиоактивного топлива, потерял управление, что привело к взрыву и выбросу в атмосферу около 50 т топлива (В.А. Радкевич, 1997 г.). Оно испарилось и образовало огромный атмосферный резервуар долгоживущих радионуклидов. Еще около 70 т топлива было выброшено за пределы реактора с периферийных участков активной зоны боковыми лучами взрыва. Помимо топлива взрывом было выброшено и около 700 т радиоактивного реакторного графита. Примерно 50 г ядер-ного топлива и 800 т графита остались в разрушенном реакторе. Вслед-ствие большой температуры в нем графит в последующие дни выгорел и тем самым способствовал увеличению количества радиоактивных осад-ков. Отметим для сравнения, что общая масса радиоактивных веществ, которые образовались в результате взрыва бомбы над Хиросимой, соста-вила лишь 4,5 т. При этом долгоживущих и поэтому особо опасных радионуклидов поступило в биосферу в 600 раз больше, нежели после ядерного взрыва 1945 Г.

Согласно имеющимся данным, последствия катастрофы оказались крайне тяжелыми. Во время самой аварии погибли 2 человека, 29 умерли позже от острого лучевого поражения, около 150 тыс. человек эвакуиро-ваны из 30 километровой зоны, которая прилегает к АЭС. В этой зоне запрещены проживание людей и ведение хозяйственной деятельности.

Выброшенное из реактора топливо в виде мелкодисперсных час-тиц диоксида урана, высокоактивных радионуклидов йода-131, плу-тония-239, нептуния-139, цезия-137, стронция-90 и других радиоак-тивных изотопов, вызвало загрязнение многих регионов. При этом наиболее сильно пострадали районы Гомельской, Могилевской, Брян-ской, Киевской и Житомирской областей.

Ученые считают, что последствия катастрофы, прежде всего в от-ношении здоровья людей, в наибольшей степени проявят себя через 10 лет после взрыва, т.е. в конце XX века. Следы ее в генном аппа-рате человека исчезнут не ранее чем через сорок поколений, т.е. по-чти через 1000 лет. Сейчас прогнозы уточняются.

Огромную опасность для здоровья человека представляет избира-тельное накопление радионуклидов в различных частях тела. Так, стронций-90, который легко аккумулируется в травах, переходит в организм, например, коровы, а далее с ее молоком попадает в орга-низм человека. В случае его накопления в костном мозге развивают-ся лейкоз или опухоль кости. Цезий-137, будучи менее раствори-мым, попадает в организм вместе с растительной пищей и аккумули-руется в печени или в половых железах. Последнее обстоятельство может привести к возникновению наследственных изменений.

Чрезвычайно опасна радиация для детей, поскольку их ткани и органы еще растут, что не исключает соматических мутаций. При этом следует подчеркнуть, что у детей отсутствует порог чувствитель-ности по отношению к радиации, поэтому неизвестно, какая доза вызывает аномалии в развитии. Ученые проследили генетические последствия чернобыльской катастрофы и установили, что за время после аварии существенно возросло количество детей Беларуси с врож-денными пороками развития. Выявлены и причины этого: лучевое воздействие на Наследственный аппарат родителей, плохая экологи-ческая обстановка в республике и неполноценное питание.

Согласно В.В. Радкевичу, рождаемость в сравнении с 1985 г. со-кратилась на 25%. Рост заболеваний беременных женщин вызвал сни-жение числа нормальных родов с 54 до 34%. Заболевание раком щи-товидной железы у детей увеличилось с 0,42 на 100 тыс. человек в 1986 г. до 2,24 в 1992 г., а в Гомельской области с 0,25 до 12 (почти в 50 раз).

Важно подчеркнуть, что чернобыльская катастрофа заставила по-новому взглянуть на так называемое экологическое напряжение. Даже в тех районах, в которых уровень загрязнения территории не вызыва-ет непосредственной угрозы здоровью населения, все же имеет место более острое протекание обычных заболеваний. Это заставляет иначе оценить влияние малых доз облучения: они оказывают как прямое влияние, так и косвенное, через экологическое напряжение. В част-ности, у населения зараженных районов сильно развита радиофобия (чрезмерная боязнь радиационного облучения), что в определенной степени и есть проявление такого экологического напряжения.

Хранение и обезвреживание радиоактивных отходов. Радиоактив-ные отходы (РАО) классифицируются по различным признакам.

По агрегатному состоянию РАО делятся на жидкие, твердые и газообразные.

Все жидкие РАО по степени активности подразделяются на три класса:

1-й класс -- слабоактивные отходы, удельная активность которых не превышает 3,7-107 Бк/м3; 2-й класс -- отходы средней степени ак-тивности (удельная реактивность в пределах 3,7-107 -- 3,7-1013Бк/м3); 3-й класс -- высокорадиоактивные отходы, (удельная активность пре-вышает 3,7-1013Бк/м3).

Типичными жидкими отходами 1-го класса являются сточные воды дезактивационных пунктов, санпропускников, прачечных и т.д. Вы-сокоактивные РАО, содержащие преимущественно искусственные ра-дионуклиды, образуются на конечных звеньях производственного цикла, а также в некоторых научных лабораториях. Особую опас-ность в экологическом аспекте (в связи с большим количеством) пред-ставляют отходы заводов, на которых перерабатываются облученные тепловыделяющие элементы (ТВЭЛы) АЭС с целью извлечения из них невыгоревшего ядерного топлива или выделения вновь образо-вавшегося плутония.

Твердые РАО также подразделяются на три группы: 1-я группа -- удельная активность находится в пределах 7,4-104 -- 3,7-106 Бк/кг, 2-я группа -- удельная активность в пределах 3,7-106 -- 3,7 10' Бк/кг; 3-я группа -- удельная активность >3,7109 Бк/кг. К твердым РАО относятся:

негорючие отходы: металлы, стекло, керамика, строительный мусор и т.д.;

горючие отходы: дерево, пластмасса, резина, полихлорвини-ловые изделия, текстиль и т.п.

Количество и объемы средне- и низкоактивных РАО чрезвычайно велики. Предполагается, что к 2000 г. в России их накопится около 1,5 млн м3, в США -- около 3,6 млн м3.

Почти 98,5% ядерного топлива АЭС идет в отходы, представляю-щие собой радиоактивные продукты расщепления (плутоний, цезий, стронций и т.д.), которые нельзя уничтожить, а можно лишь вечно хранить на спецскладах. Если учесть, что загрузка только реактора мощностью 1000 МВт (это аналог злополучного 4-го реактора Черно-быльской АЭС) составляет около 180 т, чего хватает на 3 года, то за указанное время на территории АЭС с 4 реакторами скапливается до 700 т отработанного топлива. В случае аварии это может привести к глобальной экологической катастрофе.

Образующиеся в активной зоне ядерных реакторов тритий, угле-род-14, криптон-15 и йод-129 практически полностью выделяются в биосферу. Так выброс трития атомной энергетикой СССР только за 1985 г. в 3,5 раза превзошел, по подсчетам специалистов, равновес-ное содержание его в атмосфере и более чем в 2 раза -- содержание во всех реках континентов. Криптон-85, содержащийся в атмосфере, имеет в основном искусственное происхождение. Только за 1985 г. его «выработка» на всех АЭС (а, следовательно, и выброс) в 500 тыс. раз превзошел равновесное содержание в атмосфере криптона-85 ес-тественного происхождения.

Еще более опасные последствия имеют место в случаях катастроф и аварий на атомных объектах и предприятиях.

Крупная авария произошла в 1957 г. в Челябинской области на ра-диохимическом заводе по переработке ядерного топлива и извлечения плутония для ядерных бомб. Этот завод с 1949 г. сбрасывал РАО в откры-тые водоемы, в частности, в озеро Карагай поступило 120 млн кюри (1Ки=3,71010Бк), что в два раза больше, чем в результате катастрофы в Чернобыле. В дальнейшем для жидких РАО были изготовлены бетонные емкости с покрытием из нержавеющей стали. Однако именно в них про-изошел взрыв с выбросом 2 млн кюри. Облако прошло на север, оставив радиоактивный след длиной 105 км и шириной до 8 км. Из зараженной зоны переселили 17 тыс. жителей. Ликвидация следа производится до сих пор.

В системе МО РФ очень острой стала проблема нейтрализации РАО, которые образуются в процессе эксплуатации и ремонта, а так-же вследствие вывода из боевого состава атомных подводных лодок (АПЛ) 1 и 2-го поколений. Уже сейчас на Северном флоте, напри-мер, скопилось около 90 АПЛ с выслужившими свой срок реактора-ми. Всего же в пяти ядерных флотах мира (США, Россия, Китай, Англия и Франция) в 1990--1995 гг. предполагалось списать 190 реак-торов. При плановом сроке отстоя активных зон реакторов до 5--6 лет некоторые установки находятся в этом режиме от 7 до 14 лет. При этом специалисты отмечают, что ВМФ не хватает хранилищ для РАО, а имеющиеся находятся далеко не в лучшем состоянии.

Захоронение и обеззараживание РАО: общие принципы. Свалки РАО в морях, в том числе и российских, возникли вслед за появлением атомного флота у ряда стран. Сбросы РАО, начавшиеся уже в 1959 г., продолжались систематически вплоть до 1992 г. в некоторых районах Балтийского, Баренцева, Белого, Карского, Охотского и Японского морей, а также в прибрежных водах архипелага Новая Земля и полу-острова Камчатка.

По сводным данным (В.В. Догуша, 1995 г.), в период с 1964 по 1991 г. в северных морях затоплено 4900 контейнеров с твердыми РАО низкой и средней степени активности. У восточных берегов России, в Японском и Охотском морях за 1986--1991 гг. было захоронено 6868 контейнеров со средне- и низкоакгивными твердыми РАО, а также 38 судов и более 100 крупногабаритных объектов. Их суммарная активность оценивается спе-циалистами в 22,2 тыс. кюри. За 30 лет эксплуатации атомного флота в экосистемы северных морей поступило около 100 тыс. м3 жидких РАО с активностью более 24 тыс. кюри.

Работы по организации морского радиоэкологического мониторинга в указанных районах начаты спецподразделениями ВМФ России толь-ко в 1992 г. До этого времени эпизодические исследования радиаци-онной обстановки проводились на акваториях в 50--100 км от мест захоронения РАО. Непосредственно в районах затопления контроль не проводился в течение более 20 лет. Специалисты отмечают, что в сложившейся ситуации невозможно определить действительное состо-яние защитных оболочек захороненных РАО и дать объективный про-гноз относительно сроков, скорости и масштабов выхода радионукли-дов в морскую среду.

Общее количество РАО, сброшенных в море США только в 1946-- 1970 гг. составило более 86 тыс. контейнеров с суммарной радиоак-тивностью около 95 тыс. кюри. В 1971--1983 гг. РАО предприятий военной и мирной атомной промышленности регулярно сбрасывали в море Бельгия, Англия, Нидерланды и Швейцария, эпизодически -- Франция, Италия, ФРГ, Швеция, Япония, Южная Корея. Подсчи-тано, что всего за 1967--1992 гг. в Атлантическом океане оказалось 94603 т РАО, размещенных в 188188 контейнерах, общей активнос-тью более 1 млн кюри.

К настоящему времени выработаны (К.М. Сытник и др.) следу-ющие технологии захоронения РАО: 1) для больших количеств высо-коактивных РАО -- концентрирование и последующее хранение (по-средством остекловывания, бетонирования и складирования в глубо-ких шахтах); 2) для небольших количеств высокоактивных РАО -- извлечение долгоживущих изотопов с высокой токсичностью (ядови-тостью) перед удалением остаточной активности; 3) для отходов сред-ней степени активности -- хранение до достижения распада коротко-живущих изотопов и последующее рассеивание в той или иной среде; 4) для относительно небольших количеств слабоактивных отходов -- разбавление (например, водой) и последующее рассеивание.

Ряд специалистов считает, что захоронение РАО в морских глуби-нах имеет ряд преимуществ и менее опасно, так как там существуют более благоприятные условия для быстрого рассеивания и нейтрали-зации радионуклидов и меньше возможностей для заражения водных организмов, служащих объектами морского промысла.

На Третьей международной конференции по мирному использо-ванию атомной энергии (1976 г.) в качестве наиболее безопасных в эколого-гигиеническом отношении были признаны только два мето-да захоронения РАО в море:

Захоронение в изолированном виде (в капсулах).Технология состоит в переводе РАО в стекловидное состояние (путем заливания жидким стеклом), смешении с цементом или в заключении остекло-ванной массы в коррозионностойкие контейнеры, которые способны выдержать большое внешнее давление. После этого их сбрасывают на большие глубины.

Захоронение малоактивных РАО в предварительно разбавлен-ном виде. Для того, чтобы радиоактивность отходов, попавших в морскую среду, быстро убывала, сброс их рекомендовано осуществ-лять во время движения судна и желательно под винт. Ныне законо-дательство России запрещает подобное захоронение.

Длительное хранение высокоактивных РАО. Хранение высокоак-тивных жидких отходов (обычно это водные азотнокислые растворы) осуществляется в баках из нержавеющей стали с двойным дном, объ-емом от нескольких десятков до нескольких сотен кубометров. Уста-навливают их в бетонных камерах, а для того, чтобы предотвратить возможный взрыв скапливающегося водорода, резервуар непрерывно продувают воздухом. Отработанный воздух в дальнейшем очищают от радиоактивных аэрозолей в специальных фильтрах.

Содержимое некоторых баков постоянно перемешивают, так как выпадение твердых частиц, например плутония или урана, может привести к накоплению критической массы и, следовательно, ини-циировать ядерный взрыв. Выпадение же в осадок радиоактивных солей другой природы может способствовать резкому повышению тем-пературы и также породить взрыв, но уже тепловой, с выходом ра-диоактивности в окружающую среду.

Современное хранилище высокорадиоактивных отходов состоит из вертикальных шахт, горизонтальных штреков (коридоров) и соб-ственно помещений для захоронений, сооружаемых, например, в соляных породах на глубине порядка 600 м. В полу помещения бу-рятся шурфы для хранения канистр с растворами отходов высокой удельной активности (ОВУА). Между шурфами необходимо выдер-живать расстояние от 10 до 50 м. Причиной такого разнесения ка-нистр друг от друга является их сильное тепловыделение; нарушение режима последнего может привести к катастрофе.

На Западе (США, Франция) прорабатывалось несколько проек-тов долговременных хранилищ ОВУА, включая и довольно экзоти-ческие. Один из них связан с запуском тяжелых ракет, загруженных высокоактивными отходами, в сторону Солнца, с последующим их уничтожением. Однако следует помнить, что, согласно статистике, до 2% запусков ракет заканчиваются их авариями в пределах атмосфе-ры. Подобная катастрофа, естественно, обернется тяжелейшими по-следствиями, соизмеримыми с чернобыльской. В США ведутся дли-тельная дискуссия и поиск мест для размещения двух грандиозных хранилищ для РАО на период до 10 тыс. лет. Они будут размещаться на глубине 300 -- 1000 м в местах, не подверженных землетрясени-ям: Стоимость указанного проекта оценивается в 27 млрд дол.

Одна из нерешенных проблем, сопровождающих эксплуатацион-ный цикл АЭС, которые обеспечивают около 12% потребностей Рос- сии в электроэнергии, состоит именно в необходимости достаточно безопасного захоронения соответствующих РАО. В настоящее время на территории РФ находятся 15 полигонов для захоронения РАО, на которых складируются отходы не только отечественных АЭС, но и других стран СНГ (при наличии соответствующего договора). Кроме того, туда до сих пор завозятся РАО и с территорий других госу-дарств, где в свою бытность Советский Союз сооружал атомные пред-приятия.

Проблемы ядерного терроризма и утечки информации. Остро стоит вопрос и о так называемом «ядерном» терроризме. Дело в том, что выделить оружейный плутоний -- сегодня задача технически относи-тельно несложная, и соответствующими технологиями обладают многие страны. Имеется информация, что специальным антитеррористичес-ким подразделением США за 10 лет его существования было обезвреже-но 6 таких «самодельных» ядерных взрывных устройств. В соответствии со спецзаданием ив порядке эксперимента группа ученых попыталась изготовить взрывные устройства из отработанного ядерного материала, считавшегося некондиционным, причем используя лишь те радиодета-ли, которые есть в свободной продаже. Попытка была успешной: уче-ным удалось изготовить 11 примитивных ядерных устройств, вполне при-годных для террористических актов.

Ныне признано, что в целях повышения эффективности борьбы с ядерным терроризмом насущно необходимым становится создание международного банка данных о производителях ядерных материалов с целью идентификации и маркировки новых продуктов и при необ-ходимости -- поиска по этим реперам (контрольным меткам) -- про-изводителей нелегальной ядерной продукции.

Процесс инвентаризации ядерных материалов как форма нерас-пространения ядерного оружия и ядерных технологий весьма сложен, особенно если указанные материалы содержатся в отходах. Особый контроль должен осуществляться при перевозке ядерных материалов. В целом система контроля за их сохранностью от хищения или утери должна строиться надежно, с многочисленными барьерами безопас-ности.

В течение 50 лет в СССР (а потом и в России) работы по атомной тематике являлись исключительной монополией государства и хоро-шо засекречивались. Поэтому российские ядерные центры были из-вестны и доступны весьма ограниченному числу специалистов. Ныне эти центры «раскрылись», а часть предприятий в них даже акциони-ровалась. Поскольку в последних и сейчас сосредоточена секретная информация, неизбежно возникает опасность утечки ядерных секретов. Кроме того, в период так называемой гласности в России появи-лось много открытых статей по атомной тематике, в частности по атомному оружию и его компонентам. Такие статьи, естественно, попадают в поле зрения спецслужб заинтересованных стран, и не толь-ко их. В силу этого возникает необходимость ужесточить ответствен-ность за рассекречивание, передачу, хранение, использование и тор-говлю информацией по атомной энергии.

2. Экологические проблемы уничтожения химического оружия

Впервые химическое оружие (ХО) было применено во время пер-вой мировой войны. При этом результатом стало более миллиона пострадавших, в большинстве своем со смертельными и тяжелыми поражениями.

В июне 1925 г. представители 34 стран подписали в Женеве Про-токол о запрещении применения на войне удушливых, ядовитых и других подобных газов и бактериологических средств. Через 10 лет итальянцы в ходе боевых действий нанесли 19 массированных хими-ческих ударов по войскам и населению Эфиопии. В 1937--1945 гг. Япония применила ХО во время войны против Китая, в результате чего поражения получили более 50 тысяч человек.

В годы второй мировой войны угроза применения ХО со стороны немецкой армии была вполне реальной, тем более что в 1943 г. мощ-ность химической промышленности Германии по производству от-равляющих веществ (ОВ) составляла более 30 тыс. т в год. Лишь стремительное наступление советских войск да боязнь ответного бо-лее мощного удара удержало Гитлера от соблазна применить ХО.

После войны ХО получает новое развитие. Испытываются и не-прерывно внедряются смертельные ОВ нервно-паралитического дей-ствия, психохимические вещества, токсины и фитотоксиканты. При этом основным средством доставки ОВ к поражаемым объектам ста-новится авиация, а позднее -- баллистические ракеты и в перспекти-ве -- крылатые ракеты.

Начиная с 1961 г. американцы широко применяли ХО в Индо-китае. Всего было израсходовано свыше 100 тыс. т химикатов (в основном фитотоксикантов), что обернулось для данного региона тя-желыми экологическими и генетическими последствиями. В воен-ном конфликте Ирана и Ирака обе стороны многократно использова-ли химическое оружие. Известно (А.Н. Калитаев, В.Б. Антипов, 1996 г.), что из 70 наиболее интенсивных военных конфликтов современ-ности в 20 использовались ОВ.

Важную роль в совершенствовании ХО сыграло создание бинар-ных боеприпасов. В отличие от традиционных (унитарных) видов этого оружия, они легко производятся (компоненты изготавливаются в разных местах), легко транспортируются на большие расстояния и при необходимости легко уничтожаются.

В США разработка бинарного ХО началась в 1962 г. С появлени-ем нового вида боеприпасов, обнаружить производство которых очень трудно, возросла опасность неконтролируемого распространения ХО по всему миру, усилилась угроза его скрытного накопления.

За годы военного противостояния в СССР и США было произве-дено и накоплено огромное количество ХО: на складах в США его находилось около 30, а в СССР -- около 40 тыс. т. Этого количества достаточно, чтобы многократно уничтожить все живое на планете.

Конвенция о запрещении разработки, производства, накопления и применения ХО и его уничтожении была открыта для подписания в Париже 13 января 1993 г. В 1997г- Россия ратифицировала указан-ный международно-правовой документ.

Согласно принятой Конвенции, каждое государство обязуется: никогда, ни при каких обстоятельствах не разрабатывать, не произ-водить, не приобретать, не накапливать или не сохранять ХО, не передавать его кому бы то ни было, не применять его и не произво-дить любых военных приготовлений к его использованию. Конвен-ция содержит положения, запрещающие применять в военных целях гербициды, а также использовать для пресечения уличных беспоряд-ков боевые химические средства.

Государство-участник должно начать уничтожение ХО не позднее чем через два года и завершить его не позднее чем через десять лет после вступления для него в силу Конвенции, т.е. после ратификации.

Процесс уничтожения ХО включает в себя несколько этапов.

Первый этап. По истечении не более двух лет должно завершиться апробирование первого объекта по уничтожению ХО и по истечении не более трех лет -- уничтожено не менее 1% его запасов. Второй этап. По истечении пяти лет должно быть уничтожено 25% ХО. Третий -- через 7 лет -- 40%. Четвертый -- через 10 лет -- 100% запасов ХО.

При этом каждое государство-участник самостоятельно определя-ет технологию уничтожения ХО. В то же время запрещается затопле-ние боеприпасов в водоемах, захоронение в земле и сжигание на от-крытом воздухе. При необходимости в связи с возникающими труд-ностями сроки завершения уничтожения ХО могут быть продлены на пять лет. Таким образом, следует ожидать, что у ряда присоединив-шихся к Конвенции государств, в частности России, ХО сохранится еще в течение 15 лет.

При выполнении требований Конвенции перед руководством го-сударств-участников встает ряд сложных проблем.

1. Выбор базовой технологии уничтожения. Дело в том, что изве-стные технологии (включая нетрадиционные, основанные на исполь-зовании энергии ядерного взрыва для разрушения химических бое-припасов и деструкции отравляющих веществ) не являются экологи-чески чистыми. Поэтому вопрос о наличии отработанной, безопасной во всех отношениях и экологически приемлемой технологии уничто-жения ХО до сих пор вызывает противоречивые суждения, тем более, что сроки и стоимость выполнения программы во многом зависят именно от базовой технологии.

Выбор районов для размещения объектов по уничтожению ХО. Это весьма щекотливый вопрос, для его решения необходимо учиты-вать не только результаты экологической экспертизы, но и факторы политического, географического, экономического и демографичес-кого характера, а главное -- отношение к этому процессу населения и местных органов власти. А они настроены, как правило, резко про-тив.

Сложность контроля. Средства контроля ХО имеют существен-ные недостатки и не в полной мере удовлетворяют предъявляемым к ним требованиям. При этом серьезную трудность в контрольной де-ятельности будет представлять обнаружение скрытного производства и накопления бинарных химических боеприпасов, поскольку их ком-поненты (относительно безвредные) могут производиться в одних местах, а сборка и снаряжение ими средств доставки в других.

Проблема химического терроризма. Ныне все химические бое-припасы и их компоненты размещены на складах семи военных арсе-налов в шести субъектах РФ. Все арсеналы, согласно военным источ-никам, охраняются достаточно надежно. Однако в процессе перевоз-ки ХО к местам уничтожения полностью исключить возможность хи-щений практически невозможно. Кроме того, вполне реально производство некоторых видов ОВ в «домашних условиях»: в неболь-ших институтских или производственных лабораториях. На возмож-ность этого указывает скандал, разгоревшийся в Японии и связанный с деятельностью одной из религиозных сект, которая не только суме-ла изготовить ОВ, но и применить его в токийском метро.

Проблема защиты персонала объектов и местного населения. В Институте биохимической физики Российской академии наук, изу-чая действие малых и сверхмалых доз разнообразных биологически активных веществ на живые клетки и живые организмы, установили не-гативный эффект сверхмалых доз, который проявлялся не сразу, а че-рез некоторое время. Такие дозы обладают как бы «отложенным» действием. В 1997 г. в США было отмечено воздействие сверхмалых доз нервно-паралитических ОВ на здоровье американских солдат, ко-торые еще в 1991 году невольно подверглись их воздействию в Ираке, когда авиация разбомбила склады химического оружия этой страны.

Если официально будет признано наличие причинной связи меж-ду отдаленными заболеваниями и влиянием малых доз ОВ, придется пересмотреть всю систему защитных мер от ХО. В силу этого и рос-сийские, и американские программы и технологии уничтожения ар-сеналов ХО должны быть соответственно пересмотрены с учетом дан-ных о действии сверхмалых (в тысячи раз меньших, чем вызывающие острое отравление) доз отравляющих веществ на все живые организ-мы, и прежде всего человека.

Рассмотрим еще ряд возникших проблем. Согласно Конвенции, каждое государство-участник имеет право производить и использовать любые токсичные химикаты в целях, не запрещаемых ею: «Нич-то в настоящей Конвенции не должно использоваться как препят-ствие праву любого государства-участника на исследование, разра-ботку, производство, приобретение, передачу или использование средств защиты от химического оружия».

Это право на защиту от ХО исходит из предположения, что в военных конфликтах ближайшего будущего угроза его применения в известной степени сохраняется. А раз так, каждое государство обяза-но проявлять заботу о поддержании на должном уровне системы за-щиты войск и населения от ХО и проводить необходимую работу по ее совершенствованию.

Укажем, что, опять-таки согласно Конвенции, государства, под-писавшие и ратифицировавшие ее, могут прибегнуть к применению ХО только в особых случаях: когда сложится чрезвычайная ситуация, угрожающая высшим интересам данного государства, и оно восполь-зуется предусмотренным Конвенцией правом выхода из числа госу-дарств-участников. В то же время государства, не присоединившиеся к Конвенции (некоторые арабские государства), считают себя сво-бодными от обязанности не разрабатывать, не производить, не пере-давать другим странам ХО, что, естественно, предполагает реальную опасность его использования в военных конфликтах.

Существует также опасность, что открытая публикация материа-лов по технологиям синтеза бинарных ОВ и конструктивных схем боеприпасов может стимулировать их производство в других странах.

Имеются сведения (СВ. Петров, 1995 г.) об успешных работах, на-правленных на поиск новых физиологически активных веществ (ФЛВ). Одной из целей таких исследований вполне может быть создание но-вых типов ОВ, по отношению к которым неэффективны существую-щие средства индикации, дегазации и антидотной терапии. Таким образом, существует вероятность, что эти страны в обход Конвенции смогут не только сохранить, но и повысить свой военно - химический потенциал за счет более эффективных (при сравнительно одинаковой токсичности) ОВ, маскируя их производство и накопление под раз-работку пестицидов и других химикатов. Наконец, крупные достиже-ния биотехнологии и генной инженерии, а также исследования, ве-дущиеся на стыке биологии и химии, создают предпосылки для раз-работки нового вида оружия -- биохимического, не подпадающего под запрет конвенций о биологическом и химическом оружии.

Прямым свидетельством того внимания, которое Правительство РФ уделяет экологическим проблемам ВС, явилось Постановление Правительства РФ № 1310 (1996 г.) «О первоочередных мероприяти-ях по обеспечению экологической безопасности при осуществлении деятельности Вооруженных Сил Российской Федерации», а также ряд федеральных целевых программ (ФЦП) по наиболее важным направ-лениям. Среди них, в частности:

ФЦП «Повышение безопасности ядерного оружия на 1997--2003 годы» (Утверждена Постановлением Правительства РФ № 1103-66,1996 г.);

ФЦП «Обращение с радиоактивными отходами и отработан-ными ядерными материалами, их утилизация и захоронение» (Поста-новление Правительства РФ № 1030, 1995 г.);

ФЦП «Уничтожение запасов химического оружия в Россий-ской Федерации» (Постановление Правительства РФ № 305, 1996 г.).

Список литературы

1. Экология: Учебное пособие / Под ред. проф. В.В. Денисова. - 2-е изд., исправленное и дополнительное. - М.: ИКЦ «МарТ», Ростов-на-Дону, 2004.

2. Харуэлл М., Хачиссон Т. Последствия ядерной войны. - М.: Мир, 1988.

3. Довгуша В.В., Кудрин И.Д., Тихонов М.Н. Введение в военную экологию. - М.: МОРФ, 1995.

4. Безопасность жизнедеятельности: Учебник / Под ред. проф. Э.А. Арустамова. - 2-е изд., перераб. и доп. - М.: Издательский дом «Дашков и Ко», 2000.





17.06.2012
Большое обновление Большой Научной Библиотеки  рефераты
12.06.2012
Конкурс в самом разгаре не пропустите Новости  рефераты
08.06.2012
Мы проводим опрос, а также небольшой конкурс  рефераты
05.06.2012
Сена дизайна и структуры сайта научной библиотеки  рефераты
04.06.2012
Переезд на новый хостинг  рефераты
30.05.2012
Работа над улучшением структуры сайта научной библиотеки  рефераты
27.05.2012
Работа над новым дизайном сайта библиотеки  рефераты

рефераты
©2011