БОЛЬШАЯ НАУЧНАЯ БИБЛИОТЕКА  
рефераты
Добро пожаловать на сайт Большой Научной Библиотеки! рефераты
рефераты
Меню
Главная
Банковское дело
Биржевое дело
Ветеринария
Военная кафедра
Геология
Государственно-правовые
Деньги и кредит
Естествознание
Исторические личности
Маркетинг реклама и торговля
Международные отношения
Международные экономические
Муниципальное право
Нотариат
Педагогика
Политология
Предпринимательство
Психология
Радиоэлектроника
Реклама
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Физика
Философия
Финансы
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Сельское хозяйство
Социальная работа
Сочинения по литературе и русскому языку
Товароведение
Транспорт
Химия
Экология и охрана природы
Экономика и экономическая теория

Курсовая: Железо-марганцевые конкреции мирового океана

Курсовая: Железо-марганцевые конкреции мирового океана

УРАЛЬСКАЯ ГОСУДАРСТВЕННАЯ ГОРНО-ГЕОЛОГИЧЕСКАЯ АКАДЕМИЯ

КУРСОВАЯ РАБОТА ПО МПИ

Железо - марганцевые конкреции мирового океана

Студент: Образцов П.И. Группа: РМ-00-1 Преподаватель: Рудницкий В.Ф. г.Екатеринбург 2003г. СОДЕРЖАНИЕ 1. Введение.........................3 2. История исследования.....................4 3. Распространение, состав и генезис рудных образований....5 4. Проблемы геохимии ЖМО.....................10 5. О перспективах освоения рудных ресурсов...........14 6. Заключение.........................19 7. Список используемой литературы..............20 ВВЕДЕНИЕ На протяжении предшествующих тысячелетий единственным источником минеральных ресурсов был континентальный блок, а в последней четверти ХХ в. началось освоение дна Мирового океана. В связи с этим уместно рассмотреть, каковы перспективы будущего освоения рудных ресурсов океана. Различным аспектам проблемы посвящено множество публикаций. Мы коснемся лишь самых характерных сторон состава и формирования океанских рудоносных отложений. История исследования Начальные сведения о рудных образованиях на дне открытого океана были получены в ходе проведения первой в истории мировой науки комплексной океанологической экспедиции на английском судне “Челленджер”, продолжавшейся почти четыре года (1872-1876). 18 февраля 1873 г. при проведении драгировки в 160 милях к юго-западу от Канарских о-вов со дна были подняты черные округлые желваки - железомарганцевые конкреции, содержащие, как показали уже первые анализы, значительное количество никеля, меди и кобальта. Правда, несколько ранее, в 1868 г., во время экспедиции Н.Норденшельда на шведском судне “София”, похожие конкреции были подняты со дна Карского моря, но эта находка осталась практически незамеченной. В течение нескольких десятилетий после экспедиции “Челленджера” конкреции находили регулярно почти все последующие экспедиции, получавшие донные пробы, и начиная с 60-х годов ХХ в. стали появляться обоснованные предположения о глобальном характере железомарганцевого оруденения на дне океана. Так, по расчетам Д.Меро, общие ресурсы железомарганцевых конкреций на дне Тихого океана достигают 1.66·1012 т.

Распространение, состав и генезис рудных образований

Курсовая: Железо-марганцевые конкреции мирового океана

Железомарганцевые конкреции, широко распространенные на дне Мирового океана, максимально сосредоточены в нескольких рудных полях, в пределах которых они распределяются неравномерно, хотя на некоторых участках конкреции покрывают свыше 50% площади дна. В их минеральном составе доминируют гидроксиды марганца (тодорокит, бернессит, бузерит, асболан) и железа (вернадит, гематит, фероксигит), с ними связаны все преставляющие экономический интерес металлы. Распространение железомарганцевых конкреций, обогащенных рудными металлами. Химический состав океанских конкреций крайне разнообразен: в тех или иных количествах присутствуют практически все элементы периодической системы. Для сравнения в таблице 1 приводятся средние содержания главных рудных элементов в морских железомарганцевых конкрециях и в глубоководных пелагических осадках.

Курсовая: Железо-марганцевые конкреции мирового океана

Курсовая: Железо-марганцевые конкреции мирового океана

Соотношение средних содержаний химических элементов в железомарганцевых конкрециях (ЖМК) и глубоководных осадках океана. Проблема генезиса железомарганцевых конкреций сопряжена с проблемой скорости их роста. Согласно результатам датирования конкреций традиционными радиометрическими методами, скорость их роста оценивается миллиметрами за миллион лет, т.е. намного ниже скоростей отложения осадков. По другим данным, в частности по возрасту органических остатков и по изотопному составу гелия, конкреции растут в сотни и тысячи раз быстрее и могут, как предполагают, оказаться моложе подстилающих осадков. Для подтверждения первой точки зрения требуется объяснить, почему конкреции не перекрываются относительно быстро накапливающимися осадками, для подтверждения второй - откуда за относительно короткое время поступила колоссальная масса марганца, необходимая для формирования конкреций в масштабах всего океана. В первом случае предлагался ряд объяснений, например: активность переворачивающих конкреции донных организмов, воздействие придонных течений, поддерживающих конкреции “на плаву”, тектонические толчки, встряхивающие донные отложения. Для обоснования второй концепции наиболее удобна гипотеза усиленной поставки в позднечетвертичный океан гидротермального марганца, однако конкретные доказательства подобного явления пока не приводились. В любом случае конкреции сформировались за счет поступления рудного материала из подстилающих осадков, о чем свидетельствует корреляция средних содержаний в них различных элементов. До сих пор мы фактически не знаем откуда берутся металлы, связанные в железо- марганцевых отложениях (ЖМО), каков механизм формирования конкреций, скорости их роста и др. И хотя исследований на эти темы опубликовано много, возможно тысячи, включая капитальные монографии, однако по-прежнему сохраняется дискуссионность и неопределенность во многих вопросах. Может случиться, что добыча конкреций и рудных корок (с подводных поднятий) начнется раньше, чем будут выяснены кардинальные вопросы их происхождения и роли в океанской среде. Ведь известно, что обогащенность ЖМО ценными металлами связана с их высокой сорбционной активностью, а это значит, что роль их в поддержании равновесия в составе морской воды огромна, и особенно, в условиях резкого увеличения антропогенных и техногенных сбросов в океаны.

Проблемы геохимии ЖМО

Казалось бы, что само название океанских руд свидетельствует о геохимической близости свойств Fe и Mn, формирующих общие стяжения. Это же вытекает из соседства их в таблице Менделеева. Однако, еще В.И.Вернадский писал, что в природе в зоне гипергенеза (кора выветривания) нет ни одного железо- марганцевого минерала. Большинство Mn месторождений на суше, особенно крупных, имеет осадочное происхождение. Fe- и Mn-рудные месторождения нередко сопутствуют друг другу, но всегда разделены во времени и пространстве. Это связано с разницей в величинах стандартных потенциалов окисления - более низком для Fe и - высоком для Mn. Поэтому окисление Fe в природной обстановке происходит легче и быстрее, чем Mn и оно раньше образует твердофазные соединения. Важно отметить, что в океанской среде Fe образует собственные минералы или входит в состав других (глинистых) как в окисленной, так и в восстановленной (бескислородной) осадочной толще. Mn же в твердой фазе здесь может существовать только в окислительных условиях в форме свободных гидроксидов в высшей степени окисления, близкой к MnO2, но этот предел как правило не достигается из-за сорбционного связывания гидроксидом некоторого количества MnO (обычно 1-2%), за счет окисления которого постепенно наращивается его собственная фаза. Поэтому точнее состав гидроксидов отражает формула: nMnO·MnO2·mH 2O. В восстановленных осадках это соединение растворяется, восстанавливаясь до двухвалентного состояния (MnO), и мигрирует к их поверхности в сторону кислород-содержащей среды. Именно это происходит в окраинных районах океанов, где скорости накопления осадков речного стока велики и это создает восстановительные условия в их толще. По существу, окраинные районы океанов являются “фабрикой”, поставляющей Mn и, в меньшей мере, Fe в океан. “В меньшей мере” означает не абсолютное количество Fe, а тот факт, что часть его, поступившая с речным стоком, связывается в восстановленном осадке в форме сульфидов или входит в состав других минералов и выводится из океанского рудогенеза. Это - первый этап разделения этих металлов в океане. В классических трудах Н.М. Страхова показана дальнейшая судьба этих и других металлов в океане и их накопление в благоприятных фациальных условиях (высокие содержания растворенного кислорода, низкие скорости седиментации), которые соответствуют глубоководным - пелагическим областям океанского дна, где и формируются наибольшие концентрации конкреций. Аналогичные условия возникают и на вершинах подводных обнажений, не перекрытых осадком, независимо от их местоположения в океане. В таких случаях нередко формируются рудные корки, особенностью которых является обогащенность Со, поэтому они называются кобальтоносными. В последние годы стала особенно очевидной высокая мобильность самого океанского дна, при которой реализуется эндогенная (внутриземная) энергия - это и процессы спрединга (раздвига) в океанических хребтах и связанная с ними активизация вулканической деятельности, нередко сопровождающаяся гидротермальной деятельностью, процессы субдукции и пр. Все они для ЖМО являются губительными, т.к. сопровождаются резким повышением температуры, снижением содержания кислорода в морской воде, а нередко и излияниями кислых и восстановленных гидротермальных флюидов. В таких условиях ЖМО растворяются и обогащают соответствующий объем морской воды содержавшимися в них металлами. При каждом подобном событии часть Fe остается связанной в нерастворимых формах минералов в осадочной толще, а Mn мигрирует в окислительную среду морской воды, где происходит его регенерация (переотложение), особенно интенсивная в зоне геохимического барьера на границе двух несовместимых сред. Таким образом, главное геохимическое различие между Mn и Fe в океане сводится к многообразию минеральных форм, в которых Fe выводится из рудогенеза, осаждаясь как в окислительных, так и восстановительных условиях, в то время, как Mn может находиться в твердофазной - гидроксидной форме только в окисленной среде. Mn имеет замкнутый круговорот в океане, и в ходе геологической истории, многократно может переходить из растворенного состояния в твердофазное и наоборот, в зависимости от изменений в составе морской воды, и каждый раз при этом теряет часть ранее связанного с ним Fe, что приводит к относительному обогащению ЖМО марганцем. Насколько резко произойдет это разделение зависит от геологического времени пребывания Mn в океане. Таким образом, Mn в значительно большей степени, чем Fe, связан с гидросферой и судьба его полностью контролируется изменениями в физико-химических параметрах морской воды (Еh, рН и др.). Для современного океана эндогенные проявления имеют узко локальный характер и их последствия быстро нейтрализуются несопоставимо большими массами окисленной морской воды. Жизнеспособность восстановленных гидротермальных флюидов зависит от длительности функционирования питающих их источников, в отдельных случаях это может продолжаться тысячи или десятки тысяч лет, но и эти величины не идут ни в какое сравнение с многомиллионнолетней историей окисного рудогенеза в океане, конечным результатом которого является колоссальное накопление Mn . Краткий обзор особенностей геохимии Mn в океане позволяет понять, почему причины накопления Mn следует искать не в источниках его непосредственной поставки в океан, а в сочетании фациально-благоприятных условиий для его отложения и геологической длительности существования Океана на Земле.

О перспективах освоения рудных ресурсов

Идея освоения рудных ресурсов океана возникла на базе значительных достижений в области исследований океанского дна, проводившихся ведущими мировыми державами в эпоху холодной войны и активной конкуренции за приоритет в освоении океана как стратегического пространства. Естественно, что эта идея получила поддержку руководства каждой из конкурирующих сторон, поскольку руды марганца и кобальта рассматривались как стратегическое сырье. В океане были проведены сотни специализированных рейсов научно-исследовательских судов США, СССР, а также Индии, Японии, европейских стран, Австралии, Новой Зеландии и ЮАР. Было получено и обработано невиданное ранее количество новой информации о рудном потенциале океана (табл.2), на что было истрачено, по ориентировочной оценке, около 4 млрд долл. Курсовая: Железо-марганцевые конкреции мирового океана
Атлантический океанИндийский океанТихий океан
Западная часть Восточная часть

Площадь в тыс.км2

Mn/FeРесурсы Mn в млн.т.

Площадь в тыс.км2

Mn/FeРесурсы Mn в млн.т.

Площадь в тыс.км2

Mn/FeРесурсы Mn в млн.т.

Площадь в тыс.км2

Mn/FeРесурсы Mn в млн.т.
3200,98-2020,82066151,9207080941,612014
Площади распространения ЖМО в океанах и оценка прогнозных ресурсов Mn в рудных полях Одновременно решались и другие аспекты этой проблемы - технические, правовые, экологические, экономические. Технические проблемы заключаются в способах добычи, транспортировки и переработки. Из различных методов разработки железомарганцевых конкреций и фосфоритов наиболее перспективны гидроподъемный и эрлифтный (подъем с помощью сжатого воздуха). Для транспортировки сырья предполагалось использовать обычные сухогрузные суда. Переработка конкреций и корок методами пиро- и гидрометаллургии была успешно опробована на ряде предприятий США и бывшего СССР. Правовые вопросы, возникшие в связи с предполагаемыми добычными работами в международных водах, были разрешены путем создания при ООН Подготовительной комиссии Международного органа по морскому дну, которая была уполномочена выдавать лицензии на заявочные участки. Наиболее перспективная для добычи конкреций зона Кларион-Клиппертон была поделена между несколькими заявителями - государственными организациями и международными горнорудными консорциумами. Многие залежи рудных корок, особенно в центральной части Тихого океана, оказались в пределах 200-мильных экономических зон островных государств, которые обладают монопольными правами на их освоение.

Курсовая: Железо-марганцевые конкреции мирового океана

Распределение заявленных участков на разработку железомарганцевых конкреций в зоне Кларион-Клиппертон. A - Ocean Mining Assoc.(международный консорциум); J - Ocean Management Inc. (Япония); O - Ocean Minerals Co.(США); K - Kennecott Consort (Канада); I - Ocean Mining Inc. (международный консорциум); C - COMRA (Китай) R - Южморгеология (Россия), P -InterOCEAN Metal (бывшие страны СЭВ); черным цветом показаны участки французской ассоциации AFERNOD, серым - резервные площади Международного органа по морскому дну. Экологические проблемы, связанные с нарушением среды как на дне, так и в фотическом горизонте водной толщи, предполагалось разрешить путем минимизации взмучивания придонного слоя, а также выводом продуктов промывки конкреций с борта судна на глубину нескольких сот метров по специальному трубопроводу. Наконец, наиболее критическая проблема, ставшая первостепенной, - рентабельность предприятия в целом. Еще в конце 70-х годов было подсчитано, что капитальные затраты на создание производственного комплекса по добыче и переработке 3 млн т конкреций в год составят 1.5-2 млрд долл. При этом доходы на вложенный капитал - 8.5-9.5%, а чистая прибыль после вычета налогов - лишь 3-4.5%. С учетом нестабильности океанской среды, изменчивости ситуации на рынках сбыта, а главное, при отсутствии стратегического стимула, такой экономический риск не оправдан. Но работавшие в этой области специалисты считают, что накопленный опыт по освоению подводных месторождений необходимо тщательно сохранять и приумножать, дабы немедленно его реализовать в случае изменения экономической ситуации в мировой экономике и технологиях, могущих вызвать повышение цен на черные и цветные металлы.

Курсовая: Железо-марганцевые конкреции мирового океана

Принципиальная схема разработки конкреционных океанских месторождений методом гидроподъема на специально оборудованном судне. 1, 2 - водяной насос и трубопровод для подачи воды к рабочей головке; 3, 4 - компрессор и трубопровод для подачи сжатого воздуха в пульпу; 5 - рабочая головка с гидромонитором для размыва грунта и всасывающим устройством; 6, 7 - насос и трубопровод для подъема пульпы с конкрециями; 8, 9 - насос и трубопровод для откачки отработанной пульпы и укладки на дно. Система разработана в Московской горной академии.

Заключение

Открытие на дне океана около 130 лет назад железомарганцевых конкреций и фосфоритов было первым свидетельством сосредоточения в океане рудных ресурсов. Бурное ускорение исследований рудного потенциала океана началось в 60-70-х годах прошлого столетия в ходе конкуренции мировых держав за освоение стратегического пространства и стратегического сырья. По ресурсам некоторых видов рудного сырья океан не уступает континентам. Это относится в первую очередь к кобальт-марганцевым рудным коркам и фосфоритам, а в перспективе, видимо, и к сульфидам. Результаты выполненных к настоящему времени поисково-разведочных работ, технических и технологических испытаний свидетельствуют о практической возможности освоения рудных ресурсов океана, включая обеспечение соответствующих природоохранных мероприятий. Однако возобновление этого комплекса работ, приостановленных сейчас в связи с изменением политической ситуации в мире, произойдет лишь при повышении экономической конкурентоспособности океанского рудного сырья по сравнению с континентальным, стоимость которого растет по мере истощения имеющихся ресурсов.

Список используемой литературы

1. Батурин Г.Н. Рудный потенциал океана // Природа №5 2002г. 2. Базилевская Е.С., Пущаровский Ю.М.// Российский журнал наук о Земле, 1999, т.1, №3, 205-219. 3. Гурвич Е.Г. Металлоносные осадки Мирового океана. М., 1998. 4. Ресурсы WWW



17.06.2012
Большое обновление Большой Научной Библиотеки  рефераты
12.06.2012
Конкурс в самом разгаре не пропустите Новости  рефераты
08.06.2012
Мы проводим опрос, а также небольшой конкурс  рефераты
05.06.2012
Сена дизайна и структуры сайта научной библиотеки  рефераты
04.06.2012
Переезд на новый хостинг  рефераты
30.05.2012
Работа над улучшением структуры сайта научной библиотеки  рефераты
27.05.2012
Работа над новым дизайном сайта библиотеки  рефераты

рефераты
©2011