Контрольная работа: Построение двухфакторной модели, моделей парной линейной прогрессии и множественной линейной регрессии
Контрольная работа: Построение двухфакторной модели, моделей парной линейной прогрессии и множественной линейной регрессии
ЗАДАНИЕ №1
По предложенной выборке
наблюдений результативного признака у и факторных признаков х1,х2,х3
требуется с помощью корреляционного анализа выбрать факторные признаки для
построения двухфакторной модели и пояснить свой выбор.
n |
у
|
х1
|
х2
|
х3
|
1 |
88 |
38 |
54 |
87 |
2 |
71 |
49 |
92 |
57 |
3 |
62 |
44 |
74 |
68 |
4 |
49 |
78 |
76 |
42 |
5 |
76 |
62 |
41 |
76 |
Решение
Для получения искомых
величин составим расчетную таблицу:
Получим: x1 = 54,2, х2=67,4, х3=
66; у*х1=3617; у*х2=4542,4; у*х3=4750,6; х1*х2=3657,2; х1*х3=3415,8; х2*х3=
4256,4
Рассчитаем r коэффициент
корреляции между величинами у и х1; у и х2; у и х3; х1 и х2; х2 и х3; х1 и
х3;
Cov (x*у)= х*у –х*у
Cov (x1*у)=3617-54.2*69.2 =-133,64
Cov (x2*у)=4542,4-67,4*69,2 =-121,68
Cov (x3*у)=4750,6-66*69,2 =183,4
Rх1у = cov(х1;у) = -133,64
= -133,64 =- 0,712
Var(x1)Var(y) 204,16*172,56 187,696
Rх2у = cov(х2;у)=-121,68=
-121,68 = -0,5179
Var(x2)Var(y) 319,84*172,56 234,928
Rх3у = cov(х3;у)=183,4 =183,4 = 0,900
Var(x3)Var(y) 240,4*172,56 203,675
Cov
(x1*x2)=x1*x2-x1*x
Cov(x1*x2)=3657,2-54,2*67,4=4,12
Cov(x1*x3)=3415,8-54,2*66=-161,4
Cov(x2*x3)==4256,4-67,4*66=-192
Rх1х2 = cov(х1;х2)=4,12=
4,12 = 0,016
Var(x1)Var(х2) 204,16*319,84 255,5357
Rх1х3 = cov(х1;х3) = -161,4 = -161,4
= -0,728
Var(х1)Var(х3) 204,16*240,4 221,54
Rх2х3 = cov(х2;х3) = -192 = -192
= -0,692
Var(х2)Var(х3) 240,4*319,84 277,288
Построим расчетную
таблицу для двухфакторной модели
Для построения
двухфакторной модели по модулю подходят х1 и х3 т.к у них более высокий
показатель, но по факторному признаку х1 и х3> 0,6 значит выбираем х1 и х2
ЗАДАНИЕ № 2
Результаты обследования
десяти статистически однородных филиалов фирмы в таблице (цифры условные).
Требуется:
А. Построить модель
парной линейной прогрессии производительности труда от фактора
фондовооруженности, определить коэффициент регрессии, рассчитать парный
коэффициент корреляции, оценить тесноту корреляционной связи, найти коэффициент
эластичности и бета – коэффициент: пояснить экономический смысл всех
коэффициентов;
Б. Построить модель
множественной линейной регрессии производительности труда от факторов фондо- и
энерго- вооруженности, найти все коэффициенты корреляции и детерминации,
коэффициенты эластичности и - коэффициенты, пояснить экономический смысл всех
коэффициентов.
Решение
А. Обозначим
производительность труда через у – резтивный признак, два других
признака фондовооруженость и энерговооруженность будут фак.х1 и х2. Рассмотрим
линейную модель зависимости производительности труда – у от величины
фондовооруженности – х1 это модель выражения линейной функции f вида у = а0 + а1*х1, параметры
которой находят в результате решения системы нормального уровня, сформированных
на основе метода наименьших квадратов, суть которого заключается в то, что бы
сумма квадратов отклонений фактических уравнений ряда от соответствующих,
выровненных по кривой роста значений была наименьшей.
а0*n+а_х1=_у
а0*_х1+а1*_х1^2=_(у*х1),
где суммирование
приводится по всем
- n- группам,
- параметры а0 и а1можно
рассчитать по формуле:
а1= cov(х1*у) = ух1-ух1
var(х1) х2-2/х1
а0 = у-а1*х
10*а0+396*а1 = 959
396*а0+15838*а1
= 38856
Составим расчетную
таблицу
Из расчета таблицы имеем
ух1 = 3885,60
х1 = 1583,80
Дополнительно
рассчитываем
ух1 = 95,9*39,6 = 3797,64
х1 = (39,6)^2 = 1568.16
а1 = 3885,6-3797,64 = 87,96 =
5,624040
1583,8-1568,16 15,64
а0 = 95,9-5,624040*39,6 = -126,81,
таким образом
однофакторная модель имеет вид:
у регр = а0+а1*х1
у регр = -126,812+5624041*х1
Полученное уравнение
является уравнением парной регрессии, коэффициента а1 в этом уравнении
называется коэффициентом регрессии. Знак этого коэффициента определяется
направлением связи между у и х2. В нашем случае эта связь
образуется а1 = +5,624040(+) – связь прямая.
Теснота связи между у и х1 определяется коэффициентом корреляции:
rух1 = V1-о у регр.^ 2/ оу^2 , где оу – средняя квадратная ошибка
выборки у из значений таблицы
rух1 = V1-142.79937/637.49 = 0.8809071
Чем ближе коэффициент
корреляции к единице, тем теснее корреляционная связь: rух1=0,881, следовательно, связь между производительностью
труда и фондовооруженностью достаточно тесная.
Коэффициент детерминации rух1^2
Это означает, что
фактором фондовооруженности можно объяснить 77,6% изменения производительности
труда.
Коэффициент эластичности
Эух1 = а1*х1 ср./ у ср.; Эух1 = 5,624040*39,6/95,9
Это означает, что при
увеличении фондовооруженности на 1%, производительность труда увеличится на
2,3223%.
Бета коэффициент _ух1 =
а1*ох1/оу,
_ух1 = 5,624040*V15.64/ V637,49 = 0,8809072
Это значит, что
увеличение фондовооруженности на величину среднеквадратического отклонения этого
показателя приведет к увеличению среднего значения производительности труда на
0,88 среднеквадратического отклонения.
Б. Модуль множественных
регрессий рассматривается на периметре двухфакторной линейной модели,
отражающей зависимость производительности труда у, от величины
фондовооруженности (х1) и энерговооруженности (х2), модуль
множественной регрессии имеет вид у = а0+а1у1+а2х2. Параметры модели а0,а1,а2, находятся
путем решения системы нормальных уравнений:
а0*n+а1*Sх1+а2*Sх2=Sу
а0*Sх1+а1*Sх1^2+а2*S(х1*х2) = S(у*х1)
а0*Sх2+а1*S(х1*х2)+а2*Sх2^2 = Sу*х2)
10*а0+396*а1+787*а2 = 959
396*а0+15838*а1+31689*а2
= 38859
787*а0+31689*а1+64005*а2
= 78094
Рассчитаем таблицу
Решаем систему нормальным
уравнением,методом Гаусса (метод исключения неизвестных).
Разделим каждое уравнение
системы на коэффициент при а0 соответственно:
а0+39,6*а1+78,7*а2 = 95,9
а0+39,994949*а1+80,022727*а2
= 98,128787
а0+40,26556*а1+81,327827*а2
= 99,229987
из первогоуравнения
системы вычитаем второе уравнение системы
а0+39,6а+78,7а2
= 95,9
а0 +39,994949а1+30,022727а2
= 98,128787
-0,394949-1,322727 =
-2,228787
Из первого вычитаем
третье уравнение:
а0+39,6а+78,7а2
= 95,9
а0+40,26556*а1+81,327827*а2
= 99,229987
-0,665563-2,627827 =
-3,329987
получим систему с двумя
неизвестными
0,394949*а1+1,322727а2 = 2,228787
0,665565*а1+2,627827а2
= 3,329987
Делим каждое уравнение на
β при а1 соответственно:
а1+3,349108а2 = 5,643227
а1+3,948265а2 = 5,003248
из первого вычитаем
второе
-0,599157а2 = 0,639979
Полученное значение а2
подставим в уравнение с двумя неизвестными:
а1+3,349108а2 = 5,643227
а1 = 5,643227-3,349108*(-1,0681323)
а1 = 5,643227+3,577290
Полученное значение а1
и а2 подставим в любое из уравнений с тремя неизвестными
а0+39,6а+78,7а2 = 95,9
а0 = 95,9-39,6 а1-78,7 а2
а0 =
95,9-39,6*9,220517-78,7*(-1,0681323)
а0 = 95,9-365,132473+84,062012
а0 = 185,170461
Получим модель:
у = а0+а1х1+а2х2
у = -185,170461+9,220517х1-1,0681323х2
Ответ: у =
-185,170461+9,220517х1-1,0681323х2
Парные коэффициенты
корреляции:
А. rух1 = ((у*х1)ср-уср*х1ср)/(оу*ох1)
Б. rух2 = ((у*х2)ср-уср*х2ср)/(оу*ох2),
где ох2 = VS(х2-х2ср)^2/10
В. rх1х2 = ((х1*х2)ср-х1ср*х2ср)/(ох1*ох2)
Чем ближе коэффициент
корреляции к 1, тем теснее связь.
Коэффициент множественной
корреляции:
А. rух1х2 = V(rух1^2+rух2^2-2*rух1*rух2*rх1х2)/(1-rх1х2^2)
Таким образом, степень
тесноты связи производительности труда с факторами фондовооруженности и
энерговооруженности является высокой.
Совокупный коэффициент
детерминации:
Это означает, что
совместное влияние двух факторов определяет 82,9% производительности труда.
Частные коэффициенты
корреляции:
А. rух1(х2) = (rух1-rух2*rх1х2)/V(1-rух2^2)*(1-r х1х2^2)
т.е. теснота связи между
производительностью труда и фондовооруженностью, при энерговооруженности,
значительная.
В. Rух2(х1) = (rух2-rух1*rх1х2)/V(1-rух1^2)*(1-r х1х2^2)
т.е. связи между
производительностью труда и энерговооруженностью, при неизменной
фондовооруженности, в данной выборке нет.
Частные коэффициенты
эластичности:
А. эух1(х2)
= а1*х1ср/уср
т.е. при увеличении
фондовооруженности на 1% и неизменной энерговооруженности, производительность
труда увеличится на 3,807%.
Б. эух2(х1)
= а2*х2ср/уср
т.е. при увеличении
энерговооруженности, производительность труда не изменится.
Частные бета β
коэффициенты:
А. βух1(х2)
= а1*ох1/оу
это означает, что при
неизменной энерговооруженности, увеличение на величину среднеквадратического
отклонения размера фондовооруженности приведет к увеличению средней
производительности труда на 1,444 среднеквадратического отклонения.
Б. Βух2(х1)
= а2*ох2/оу
это означает, что связи
нет.
|