БОЛЬШАЯ НАУЧНАЯ БИБЛИОТЕКА  
рефераты
Добро пожаловать на сайт Большой Научной Библиотеки! рефераты
рефераты
Меню
Главная
Банковское дело
Биржевое дело
Ветеринария
Военная кафедра
Геология
Государственно-правовые
Деньги и кредит
Естествознание
Исторические личности
Маркетинг реклама и торговля
Международные отношения
Международные экономические
Муниципальное право
Нотариат
Педагогика
Политология
Предпринимательство
Психология
Радиоэлектроника
Реклама
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Физика
Философия
Финансы
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Сельское хозяйство
Социальная работа
Сочинения по литературе и русскому языку
Товароведение
Транспорт
Химия
Экология и охрана природы
Экономика и экономическая теория

Контрольная работа: Материаловедение и технология конструкционных материалов

Контрольная работа: Материаловедение и технология конструкционных материалов

Министерство образования РФ

Пермский государственный технический университет

Строительный факультет

Кафедра строительных материалов и специальных технологий

Контрольное задание №3

(по курсу «Материаловедение и технология конструкционных материалов»)


Вариант 4


Выполнила: студентка гр. ПГСз-

г.Пермь-2008г.


Содержание:

Задача №1

Задача №2

1. В чем сущность наименований: спокойная, кипящая, полуспокойная сталь?

2. Что представляет собой приклеивающиеся и покровные мастики для рулонных кровельных материалов?.

3. Что такое сиккативы, для чего они используются в красочных веществах?

4. Сущность производства железобетонных изделий в кассетах

5. В чем заключается старение и деструкция полимерных материалов?.

Список литературы


Задача №1.

Определить механические характеристики и марку стали, если при испытании на твердость по Бринеллю (Д=10мм, Р=3000кг) средний диаметр отпечатков составляет 6,2мм.

По таблице твердости по методу Бринелля в зависимости от диаметра отпечатка шарика диаметром 10мм  определяют твердость:

 НВ=88,7кг/мм , соответственно,

.

Следовательно сталь имеет марку Ст.1.

Задача №2

Определить интенсивность вибрации, если при частоте 75 Гц амплитуда колебаний А=0,2мм.

Интенсивность вибрации выражают посредством виброускорения W, см/с:

А – амплитуда колебаний (половина наибольшего  размаха)

 - угловая скорость

 - частота колебаний, Гц

А=0,2мм=0,02см

 см/с

Ответ: интенсивность вибрации = 4436,82 см/с


1.   В чем сущность наименований: спокойная, кипящая,

полуспокойная сталь?

Стали, применяемые в строительстве, называют конструкционными, причем они могут быть углеродистыми и легированными; содержат обычно не более      0,5 – 0,6% С, обладают высокими механическими свойствами. Их разделяют на стали общего назначения и качественную сталь. В зависимости от способа раскисления с уменьшением содержания кислорода сталь разделяют на кипящую, спокойную и полуспокойную.

Кипящая сталь обладает высокой пластичностью. Она более хладноломка и способна к старению, хуже сваривается, чем спокойная и полуспокойная стали. Качество кипящей стали ниже качества спокойной и полуспокойной стали, она дешевле их вследствие небольшого объема отходов при ее производстве.

Спокойная сталь содержит кислород в растворенном состоянии или в виде оксида железа FeO, является красноломкой и поэтому ее нельзя обрабатывать давлением. Для уменьшения содержания кислорода в стали ее раскисляют марганцем, кремнием и др. она остывает в изложнице с уменьшением объема, почти не выделяет газов, вследствие чего ведет себя «спокойно». В верхней части слитка усадочную раковину и рыхлость как дефектную часть отрубают или отрезают.

Полуспокойная сталь содержит часть растворенного кислорода, вследствие чего происходит непродолжительное «кипение» стали. Ее раскисляют марганцем и алюминием. По качеству она занимает промежуточное положение между кипящей и спокойной.


2.   Что представляют собой приклеивающиеся и покровные

мастики для рулонных кровельных материалов?

Мастика – смесь нефтяного битума или дегтя (отогнанного и составленного) с минеральным наполнителем и добавкой антисептика. Для получения мастик применяют:пылевидные наполнители (измельченный тальк, магнезит, известняк, доломит, мел, цемент, золы твердых видов топлива); волокнистые наполнители (асбест, минеральную вату и др.). наполнители адсорбируют на своей поверхности масла, при этом повышаются теплостойкость и твердость мастики. Кроме того, уменьшается расход битума или дегтя; волокнистые наполнители, армируя материал, увеличивают его сопротивление изгибу.

Приклеивающиеся мастики применяют для склеивания рулонных материалов при устройстве многослойных кровельных покрытий и оклеечной гидроизоляции. Битумные кровельные материалы (рубероид, пергамин) приклеивают битумной мастикой, а дегтевые (толь, толь-кожа) дегтевой. Марку приклеивающей мастики устанавливают по показателю теплостойкости.

мастики компоненты марки

теплостойкость, С

гибкость – диаметр, мм
битумные нефтяной битум, наполнитель, антисептик

МБК-Г-55

МБК-Г-65

МБК-Г-75

МБК-Г-85

МБК-Г-100

55

65

75

85

100

15

15

20

30

35

Дегтевые каменноугольные дегти, наполнитель

МДК-Г-50

МДК-Г-60

МДК-Г-70

50

60

70

25

30

40

Теплостойкость мастики характеризуется предельной температурой, при которой слой мастики толщиной 2 мм, склеивающий два образца пергамента в течение 5 ч на уклоне кровли в 45. Выбор марки мастики производят в зависимости от максимальной температуры воздуха и уклона кровли.

Мастичные кровельные покрытия   получают при нанесении на основание (обычно, бетонное) жидковязких олигомерных продуктов, которые, отверждаясь, образуют сплошную эластичную пленку. Мастики имеют хорошую адгезию к бетону, металлам и битумным материалам. По сути, мастичные кровельные покрытия – это полимерные мембраны, формируемые прямо на поверхности крыши. Особенно удобны мастичные материалы при выполнении узлов примыкания.

Мастики могут применяться как самостоятельно, так и совместно с армирующей основой (например, стеклотканью).

Как правило, мастики представляют собой наполненные системы, пленкообразующим компонентом в которых служит жидкий каучук или другой реакционноспособный эластомер. Непосредственно перед нанесением в основную часть мастики вводится отверждающий (вулканизирующий) компонент. После этого мастика наносится валиком, кистью или распылителем на основание. Используются и однокомпонентные мастики, отверждающие кислородом или влагой воздуха.

Большинство мастик позволяет работать даже при отрицательных температурах (до минус 5…10 С). Полное отверждение мастики, как правило, наступает не позже 1 сут после нанесения. Обычно мастика наносится в 2…3 слоя, в результате чего образуется пленка толщиной 2…3 мм.

Эластичность образующихся пленок очень велика (относительное удлинение при разрыве 300…500%). В случае использования стеклоткани относительное удлинение бедет определяться уже стеклотканью, т.е. не превысит 2…4%. Таким образом, увеличение прочности покрытия достигается ценой потери эластичности.

Мастичные покрытия могут устраиваться и по старой руллоной кровле без ее снятия; также возможен ремонт старого мастичного покрытия путем нанесения нового тонкого слоя мастики.

3.   Что такое сиккативы, для чего они используются в красочных

веществах?

Сиккативами являются окислители, растворяющиеся в нагретом масле, - марганцевые, кобальтовые соли жирных или нафтеновых кислот.

Сиккативы используются для быстрого высыхания красочных веществ в тонком слое (за 12 – 14 часов)

4. Сущность производства железобетонных изделий в кассетах.

Производство железобетонных изделий для сборного строительства развивается по двум принципиально различным направлениям: формирование в стационарных, неперемещаемых формах – стендовая и кассетная технологии; формование в перемещаемых формах – поточно-агрегатный способ и на поддонах-вагонетках конвейерная технология.

Стендовая технология. Стенд представляет собой железобетонную площадку с гладкой поверхностью, разделенную полосами на отдельные технологические участки. На площадке устанавливают опалбки определенной конфигурации, соответствующей форме будущего изделия. Изделие, находясь в стационарной форме в течение всего производственного цикла (до момента затвердения бетона), остается на месте. В то же время технологическое оборудование для выполнения отдельных операций по укладке арматуры, бетонной смеси и уплотнению перемещается последовательно от одной формы к другой.

Стендовый способ дает высокий экономический эффект при изготовлении железобетонных изделий значительных размеров: плит перекрытий, ферм и балок для промышленного и транспортного строительства.

Особое значение стендовый способ производства приобрел при массовом изготовлении изделий в кассетах.

При таком способе производства изделия изготовляют в вертикальных формах-кассетах, представляющих собой ряд отсеков, образованных стальными, прочно укрепленными стенками перегородками. На кассетной установке осуществляется полностью весь цикл производства тонкостенных изделий, т.е. укладка арматуры, укладка и уплотнение бетонной смеси и твердение. Для этой цели кассетная установка имеет вибрирующие устройства для парообогрева или электрообогрева изделий в процессе твердения.

4.   В чем заключается старение и деструкция полимерных

материалов.

Эксплуатационные условия, в которых могут находиться пластмассы, полимерные изделия и конструкции, защитные покрытия, не всегда бывают благоприятными для устойчивого состояния материала. Трубопроводы в грунте, полы в цехах химических предприятий, антикоррозионные покрытия в морских гидротехнических сооружениях, пленочное экранирование водохранилищ, тентовые конструкции, облицовки кислотных емкостей из железобетона и т. п. — лишь отдельные примеры таких условий работы конструкций и изделий. В сложных эксплуатационных условиях изделия и конструкции из полимерных материалов или изготовленных на их основе (пластмассы, полимеррастворы и полимербетоны) вступают в контакт с газообразными и жидкими агрессивными средами, подвергаются не только механическим напряжениям, но и воздействию тепловой энергии, ветра, солнечной радиации, кислорода и озона, влажного воздуха, паров растворителей или других жидкостей. Ускоренное протекание процессов деструкции и старения полимеров обусловлено совмещением действия активных внешних факторов с механическими напряжениями в материале, особенно на растяжение.

Под воздействием различных активных факторов и при высокой для данного материала температуре могут развиваться в полимере процессы окисления и деструкции с разрывом макромолекул по длине цепи, отрывом отдельных или групп атомов от ее звеньев.

В реакциях деструкции полимеров характерным является снижение молекулярной массы и выделение летучих продуктов — хлористого водорода, оксида и диоксида углерода и др. К наиболее слабым частям молекул, способным реагировать с воздействующей средой, относятся двойные связи и активные в химическом отношении радикалы.

Фиолетовых лучей, особенно при свободном доступе воздуха, повышенных температурах и длительном механическом напряжении под воздействием разрывных усилий. Характер соответствующих изменений в материале может выражаться в деструкции (расщеплении макромолекул), возможно с побочными явлениями — выделением газов, паров пластификатора, увеличением (или уменьшением) двойных связей, что усиливает реакционную способность и обусловливает неустойчивую структуру. Характер изменений в материале может выражаться также в дополнительном структурировании, например химическом «сшивании» под воздействием ионизирующих излучений. Операции деструкции и химического «сшивания» нередко протекают одновременно, хотя может превалировать одна из них. Установлено, что если полимерные материалы подвергались действию радиации, то практически нельзя устранить изменения их механических свойств, поскольку возникают и развиваются химические необратимые реакции. Если в полимере имелся пластификатор, то под влиянием его частичного испарения нарастает жесткость изделий во времени и понижается их морозостойкость.

Недостатком материалов на основе полимеров нередко является способность этих связующих поглощать воду при длительном контакте, набухать со снижением прочности, упругости и ухудшением других качественных характеристик. Отдельные полимеры при действии воды, особенно слабощелочной или слабокислой, подвержены гидролизу с последующим вымыванием продуктов гидролиза, что повышает пористость. Большинство полимеров (и полимербетонов) имеет пониженную водостойкость, повышенную усадку; не всегда полезен их высокий коэффициент температурного расширения.

Деструктивные явления и процессы старения рассмотрены ниже в отношении ряда термопластичных и термореактивных полимеров.

Полиэтилен высокого и низкого давления, широко употребляемый в строительстве, характеризуется в целом высокой стойкостью при температурах до 60°С, но он не стоек к действию окислителей при повышенных температурах. Вода не вступает с этим полярным полимером в химические взаимоотношения и не пластифицирует его, но в среде ПАВ (например, эмульгатора ОП-10) наблюдается значительное увеличение поглощения водной среды. Полиэтилен подвержен старению и окислительному разрушению под действием активной части солнечной радиации, ионизирующего излучения. После облучения этот полимер полностью теряет способность растворяться в органических растворителях, приобретает упругость, причем модуль упругости может увеличиться на 200—250% с нарастанием и его хрупкости. Эти изменения свойств могут отражать образование поперечных связей («сшивок»), хотя в кристаллизованном полиэтилене между цепями молекул всегда действуют слабые ван-дер-ваальсовы силы.

Полиизобутилен стоек к действию минеральных кислот, концентрированых едких щелочей. Однако под влиянием ароматических и хлорированных углеводородов он сравнительно легко растворяется с потерей исходных физико-механических свойств.

Поливинилхлорид и его сополимеры с винилацетатом характеризуются высокой стойкостью к кислым и щелочным средам. Трубы из поливинилхлорида успешно используют для транспортирования агрессивных жидкостей при температуре от -15 до +60°С. Но и этот полимер, а также полистирол с его высокой способностью сохранять твердость при повышении температуры (температура плавления его 230°С) не проявляют стойкости при солнечном облучении и быстро стареют, набирают хрупкость.

Полиэфирные полимеры имеют высокую стойкость к большинству кислот любой концентрации до температуры 80°С, к сульфатам, хлоридам, спиртам, нефтепродуктам. Но они подвержены коррозионному воздействию азотной, уксусной и муравьиной кислот. Они не проявляют достаточной стойкости к едким щелочам, к некоторым средним и особенно кислым солям, например к углекислому калию, сернокислому натрию.

Эпоксидные и фурановые полимеры не отличаются высокой химической стойкостью к воздействию сильных окислителей. Производные от них, например эпоксидно-фурановые материалы, имеют слабую химическую сопротивляемость к уксусной и молочной кислотам.

Остаются весьма сложными условиями для большинства полимеров: работа при температуре ниже их температуры хрупкости, когда разрушение материала может наступить мгновенно.

Стабилизации структуры, повышения стойкости полимеров к деструкции и старению достигают различными технологическими и эксплуатационными мероприятиями общего и специфического характера, Сравнительно общим способом торможения деструкции при воздействии света и облучений является введение химических реагентов (соединений), способных поглощать ультрафиолетовые и другие лучи, не подвергаясь сами фотосинтезу или изменениям. К таким реагентам относятся, например, для стабилизации полиэтилена и др. — бензотриазол, тинувин, хлористый марганец и т. п. Другой способ — введение светоотражающих добавок, например алюминиевой пудры. В полимеры вводят также антиоксиданты, наполнители, стабилизаторы и др. В эксплуатационный период приносят пользу меры нанесения мастик, эмалей, паст на лиофобной основе для изоляции.


Список литературы:

1.         И.А.Рыбьев «Строительное материаловедение»,

2.         Г.И.Горчаков, Ю.М.Баженов «Строительные материалы»,

3.         В.Г.Микульский, В.Н.Куприянов и др. «Строительные материалы»,

4.         П.Ф.Шубенкин «Строительные материалы и изделия. Примеры задач с решениями».






17.06.2012
Большое обновление Большой Научной Библиотеки  рефераты
12.06.2012
Конкурс в самом разгаре не пропустите Новости  рефераты
08.06.2012
Мы проводим опрос, а также небольшой конкурс  рефераты
05.06.2012
Сена дизайна и структуры сайта научной библиотеки  рефераты
04.06.2012
Переезд на новый хостинг  рефераты
30.05.2012
Работа над улучшением структуры сайта научной библиотеки  рефераты
27.05.2012
Работа над новым дизайном сайта библиотеки  рефераты

рефераты
©2011