Дисперсность
Дисперсность
Шкала дисперсности. Удельная поверхность. Степень дисперсности. Классификация дисперсных систем. Понятия: дисперсная фаза и дисперсионная среда. Методы получения дисперсных систем Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды. Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость (рис. 1.1.1.1). Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность. Поверхность раздела фаз характеризуется раздробленностью и гетерогенностью. Раздробленность характеризуется: 1) степенью дисперсности: , [см-1; м-1], где ?S - суммарная межфазная поверхность или поверхность всех частиц дисперсной фазы; V - объем частиц дисперсной фазы. 2) дисперсностью - величиной, обратной минимальному размеру: [; ]; 3)удельной поверхностью: , [м2/кг; см2/г]; ??где m - масса частиц дисперсной фазы. 4) кривизной поверхности: . Для частицы неправильной формы , где r1 и r2 - радиусы окружностей при прохождении через поверхность и нормаль к ней в данной точке двух перпендикулярных плоскостей. 5) размером тела по трем осям, причем определяющим является размер по той оси, где он минимальный. В зависимости от размеров частиц они имеют свои исторические названия (см. рис. 1.1.1.1). Классификация дисперсных систем осуществляется по нескольким признакам (рис. 1.1.1.2). По дисперсности различают: а) грубодисперсные системы, для них D < 103 [1/см] (рис. 1.1.1.3); б) микрогетерогенные системы, для них D = 103 - 105 [1/см]; в) ультрамикрогетерогенные системы, для них D = 105 - 107 [1/см]. По агрегатному состоянию дисперсной фазы и дисперсионной среды. Эта классификация была предложена Оствальдом (см. табл. 1.1.1.1). По структуре дисперсные системы различают: свободные дисперсные системы, когда частицы обеих составляющих системы могут свободно перемещаться друг относительно друга (золь); связанные дисперсные системы, когда одна из составляющих системы представляет собой структурированную систему, т.е. частицы фазы жестко связаны между собой (студень, композиты). Таблица 1.1.1.1 Классификация по агрегатному состоянию фаз |
Агрегатное состояние дисперсной фазы | Агрегатное состояние дисперсион-ной среды | Условное обозначение фаза/среда | Название системы | Примеры | | г | г | г/г ж/г тв/г | Аэрозоли | атмосфера Земли | | ж | г | | | туман, слоистые облака | | тв | г | | | дымы, пыли, перистые облака | | г | ж | г/ж | Газовые эму-льсии, пены | газированная вода, мыльная и пивная пены | | ж | ж | ж/ж | Эмульсии | молоко, масло сливочное, кремы и т.д. | | тв | ж | тв/ж | Лиозоли, суспензии | лиофобные коллоидные растворы, суспензии, пасты, краски и т.д. | | г | тв | г/тв | Твердые пены | пемза, пенопласт, активированный уголь, хлеб, пенобетон и т.д. | | ж | тв | ж/тв | Твердые эмульсии | вода в парафине, минералы с жидкими включениями, пористые тела в жидкости | | тв | тв | тв/тв | Твердые золи | сталь, чугун, цветные стекла, драгоценные камни | | |
По межфазному взаимодействию - лиофильные и лиофобные системы (предложено Г. Фрейндлихом). Классификация пригодна только для систем с жидкой дисперсионной средой. Лиофильные системы - в них дисперсная фаза взаимодействует с дисперсионной средой и при определенных условиях способна в ней растворяться - растворы коллоидных ПАВ, растворы ВМС. Свободная энергия системы F < 0. F = U - TdS; Sсмешения > 0; U = Wког - Wсольв, где Wког - работа когезии; Wсольв - работа сольватации. При U > 0, U < 0 TdS >U. Эта группа характеризуется малым значением поверхностного натяжения на границе раздела фаз. Лиофобные системы - в них дисперсная фаза не способна взаимодействовать с дисперсионной средой и растворяться в ней. Для них F > 0. Диспергирование в этом случае совершается либо за счет внешней работы, либо за счет других процессов, идущих в системе спонтанно (химическая реакция) и характеризуется высоким значением поверхностного натяжения на границе раздела фаз, что соответствует малому значению энергии сольватации. Существует две группы способов получения дисперсных систем: Способы диспергирования заключаются в раздроблении тела до коллоидного состояния (мукомольное производство). Способы конденсации заключаются в укрупнении частиц, атомов, молекул до частиц коллоидных размеров (химическая реакция с образованием осадка). Молекулярно-кинетические свойства дисперсных систем Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул. Молекулы жидкой и газообразной дисперсионной среды находятся в постоянном движении и сталкиваются между собой. Среднее расстояние, проходимое молекулой до столкновения с соседней, называют средней длиной свободного пробега. Молекулы обладают различной кинетической энергией. При данной температуре среднее значение кинетической энергии молекул остается постоянным, составляя для одной молекулы и одного моля: ; , где m - масса одной молекулы; M - масса одного моля; v - скорость движения молекул; k - константа Больцмана; R - универсальная газовая постоянная. Флуктуация значений кинетической энергии молекул дисперсионной среды (т.е. отклонение от среднего) и является причиной молекулярно-кинетических свойств. Изучение молекулярно-кинетических свойств возможно в результате применения статистических методов исследования, действительных для систем, состоящих из множества элементов (молекул). Исходя из допущения о беспорядочности движения отдельных молекул, теория определяет наиболее вероятное сочетание для систем из множества объектов. Молекулярно-кинетические свойства проявляются в жидкой и газообразной среде, молекулы которых обладают определенно подвижностью. Броуновское движение Броуновским называют непрерывное, хаотическое, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкостях или газах, за счет воздействия молекул дисперсионной среды. Мельчайшие частицы незначительной массы испытывают неодинаковые удары со стороны молекул дисперсионной среды, возникает сила, движущая частицу, направление и импульс силы, непрерывно меняются, поэтому частица совершает хаотические движения. Определили эти изменения и связали их с молекулярно-кинетическими свойствами среды в 1907 году А. Эйнштейн и М. Смолуховский. В основе расчета - не истинный путь частицы дисперсной фазы, а сдвиг частиц. Если путь частицы определяется ломаной линией, то сдвиг х характеризует изменение координат частицы за определенный отрезок времени. Средний сдвиг определяет среднеквадратичное смещение частицы: , где х1, х2, хi - сдвиг частиц за определенное время. Теория броуновского движения исходит из представления о взаимодействии случайной силы f(), характеризующей удары молекул, силы F, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде со скоростью v. Уравнение броуровского движения (уравнение Ланжевена) имеет вид: , где m - масса частицы; - коэффициент вязкости дисперсионной среды. Для больших промежутков времени (>>m/) инерцией частиц (m(dv/d) можно пренебречь. После интегрирования уравнения при условии, что среднее произведение импульсов случайной силы равно нулю, среднее значение флуктуации (средний сдвиг) равно: , где - время; r - радиус частиц дисперсной фазы; NA - число Авогадро частиц. В этой формуле характеризует молекулярно-кинетические свойства дисперсионной среды, - ее вязкость, r - радиус частиц - параметр, относящийся к дисперсной фазе, а время определяет взаимодействие дисперсионной среды с дисперсной фазой. Кроме поступательного, возможно вращательное броуновское движение для двухмерных частиц и частиц неправильной формы (нитей, волокон, хлопьев и т.д.). Броуновское движение наиболее интенсивно проявляется в высокодисперсных системах (размеры частиц 10-9 10-7 м), несмотря на то, что молекулы дисперсионной среды действуют также и на частицы средне- и грубодисперсных систем. Но в связи со значительным размером частиц число ударов молекул резко увеличивается. По законам статистики, импульс действия сил со стороны молекул среды взаимно компенсируется, а значительная масса и инерция крупных частиц оставляет воздействие молекул без последствий. Тема 1.1.2. Диффузия Диффузией называют самопроизвольное распространение вещества из области с большей концентрацией в область с меньшей концентрацией. Различают следующие виды диффузии: молекулярную, ионную и коллоидных частиц. Ионная диффузия связана с самопроизвольным перемещением ионов. Диффузия высокодисперсных коллоидных частиц показана на рис. 1.1.2.1. В нижней части концентрация частиц больше, чем в верхней, т.е. v1>v2 (где , м3 - численная концентрация частиц, N - число частиц дисперсной фазы, Vд.с. - объем дисперсной системы). Диффузия направлена из области с большей концентрации в область с меньшей концентрацией, т.е. снизу вверх (на рис. показано стрелкой). Диффузия характеризуется определенной скоростью перемещения вещества через поперечное сечение В, которая равна . На расстоянии х разность концентраций составит v2 - v1, т к. v1>v2, эта величина отрицательна. Изменение концентрации, отнесенное к единице расстояния, называют градиентом концентрации или (в дифф. форме) . Скорость перемещения вещества пропорциональна градиенту концентрации и площади В, через которую происходит движение диффузионного потока, т.е. ; - - основное уравнение диффузии в дифференциальной форме. Скорость диффузии () величина положительная, а градиент концентрации - отрицателен.; поэтому перед правой частью уравнения - знак «минус». Коэффициент пропорциональности D - это коэффициент диффузии. Основное уравнение справедливо для всех видов диффузии , в т.ч. и для коллоидных частиц. В интегральной форме оно применимо для двух процессов - стационарного и нестационарного: для стационарного процесса: =const. Значительное число диффузионных процессов близко к стационарным. Интегрируя , получим: ; - -й закон диффузии Фика. Физический смысл коэффициента диффузии D: если -=1, В = 1 и = 1, то m = D, т.е. коэффициент диффузии численно равен массе диффундирующего вещества, когда градиент концентрации, площадь сечения диффузионного потока и время равны единице. Равенство только численное, т.к. размерность коэффициента диффузии [м2/с] не соответствует размерности массы. для нестационарного процесса: const. Тогда интегрирование основного уравнения с учетом изменения градиента концентрации усложняется. При отсутствии в среде градиентов температуры, давления, электрического потенциала из уравнения определим массу вещества m1, переносимого в результате диффузии в единицу времени через единицу площади поверхности, перпендикулярной направлению переноса (В = 1 и = 1): , с учетом которого можно определить пространственно-временное распределение концентрации: - второй закон Фика. На рис. представлена одномерная диффузия, определяющая движение вещества в одном направлении. Возможна также двух- и трехмерная диффузия вещества (диффузия вещества в двух и трех направлениях), описываемая уравнением: , где I - вектор плотности диффузионного потока; grad v - градиент поля концентрации. Для трехмерной диффузии, по второму закону Фика, запишем: . Для двумерной диффузии в правой части уравнения ограничиваемся выражениями для х и y. Значения коэффициента диффузии для видов её распределяются так: ионная - D = 10-8 м2/с; молекулярная - D = 10-9; коллоидных частиц - D = 10-10. Отсюда видно, что диффузия коллоидных частиц затруднена по сравнению с двумя другими видами. Так, скорость диффузии частиц карамели (дисперсная фаза - коллоидный раствор) в 100 - 1000 раз меньше скорости диффузии молекул сахара (молекулярный раствор). Соответственно в газах D увеличивается до 10-4, в твердых телах снижается до 10-12 м2/с. Количественно диффузия определяется коэффициентом диффузии, связанным со средним сдвигом соотношением: ; - продолжительность диффузии. Диффузия высокодисперсных частиц совершается беспорядочно с большей вероятностью в сторону меньшей концентрации. При выводе соотношения приняты следующие допущения: частицы дисперсной фазы движутся независимо друг от друга, между ними отсутствует взаимодействие; средняя энергия поступательных движений частиц равна 0,5 kT. Используя формулу определения среднего сдвига, коэффициент диффузии можно представить в виде: (k - константа Больцмана, равная ). Если D известен, найдем размер частиц: ; чем больше размер частиц, тем меньше коэффициент диффузии, менее интенсивна сама диффузия. Диффузия в полной мере проявляется у высокодисперсных систем (10-9 - 10-7 м), ослаблена у среднедисперсных (10-7 - 10-5 м) и практически отсутствует у грубодисперсных систем (>10-5 м). Коэффициент диффузии зависит и от формы частиц, что не учтено в уравнении . Поэтому формула определяет размер только коллоидных шарообразных частиц (или приведенный к шарообразному размер частиц неправильной формы). Тема 1.2.3. Осмотическое давление При разделении двух растворов различной концентрации или раствора и чистого растворителя полупроницаемой перегородкой (мембраной) возникает поток растворителя от меньшей концентрации к большей, выравнивающей концентрацию. Этот процесс называется осмосом. На схеме (рис. 1.2.3.1) в сосуд с полупроницаемой перегородкой 3, помещен раствор 1. Перегородка пропускает дисперсионную среду (растворитель), но является препятствием для коллоидных частиц (растворенных веществ). Снаружи перегородки - чистый растворитель 2. Концентрация раствора по обе стороны перегородки различна. Внутри сосуда 1 часть раствора занимают молекулы растворенного вещества (частицы дисперсной фазы) концентрация растворителя там меньше, чем в емкости 2 с чистым растворителем. За счет диффузии жидкость из области более высокой концентрации перемещается в область меньшей концентрации (из емкости 2 в сосуд 1). С кинетической точки зрения это обусловлено тем, что число ударов молекул о мембрану растворителя со стороны чистого или более разбавленного раствора больше, чем со стороны раствора, что и заставляет перемещаться растворитель через поры мембраны туда, где его меньше (т.е. в область раствора). С термодинамической точки зрения, химический потенциал 2 чистой жидкости больше 1 растворителя в растворе, процесс самопроизвольно идет в сторону меньшего химического потенциала до их выравнивания: 2 = 1. В результате перемещения жидкости в емкости 1 создается избыточное давление , называемое осмотическим. Растворитель, проникающий в область раствора 1, поднимает уровень жидкости на высоту Н, что компенсирует давление чистого растворителя в сторону раствора. Наступает момент, когда вес столба жидкости в области раствора уравнивается давлением растворителя. Осмотическое давление - такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы она в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор) Осмотическое давление достаточно разбавленных коллоидных растворов может быть найдено по уравнению: или - уравнение Вант-Гоффа где mобщ/m - масса растворенного вещества; m - масса одной частицы; V - объем частицы; NA - число Авогадро; Т - абсолютная температура; - частичная концентрация; k - постоянная Больцмана; М - масса одного моля растворенного вещества; с - массовая концентрация.
|