БОЛЬШАЯ НАУЧНАЯ БИБЛИОТЕКА  
рефераты
Добро пожаловать на сайт Большой Научной Библиотеки! рефераты
рефераты
Меню
Главная
Банковское дело
Биржевое дело
Ветеринария
Военная кафедра
Геология
Государственно-правовые
Деньги и кредит
Естествознание
Исторические личности
Маркетинг реклама и торговля
Международные отношения
Международные экономические
Муниципальное право
Нотариат
Педагогика
Политология
Предпринимательство
Психология
Радиоэлектроника
Реклама
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Физика
Философия
Финансы
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Сельское хозяйство
Социальная работа
Сочинения по литературе и русскому языку
Товароведение
Транспорт
Химия
Экология и охрана природы
Экономика и экономическая теория

Элементы d-блока периодической системы

Элементы d-блока периодической системы

1. Химические свойства и биологическая роль элементов d-блока

К d-блоку относятся 32 элемента периодической системы. Они расположены в побочных подгруппах периодической системы в 4-7 больших периодах между s- и p-элементами.

Характерной особенностью элементов d-блока является то, что в их атомах последними заполняются орбитали не внешнего слоя (как у s- и p-элементов), а предвнешнего [(n - 1)d] слоя. В связи с этим, у d-элементов валентными являются энергетически близкие девять орбиталей - одна ns-орбиталь, три nр-орбитали внешнего и пять (n - 1)d-орбиталей предвнешнего энергетического уровней:

Строение внешних электронных оболочек атомов d блока описывается формулой (n-1)dansb, где а=1~10, b=1~2.

2. Общая характеристика d-элементов

В периодах (слева направо) с увеличением заряда ядра радиус атома возрастает медленно, непропорционально числу электронов, заполняющих оболочку атома.

Причины - лантаноидное сжатие и проникновение ns электронов под d-электронный слой (в соответствии с принципом наименьшей энергии). Происходит экранирование заряда ядра внешними валентными электронами: у элементов 4-го периода внешние электроны проникают под экран электронов 3d-подуровня, а у элементов 6-го периода - под экран 4f и 5d электронов (двойное экранирование).

В периодах (слева направо) наблюдается уменьшение энергии ионизации, энергии сродства к электрону. Поскольку изменения энергии ионизации и энергии сродства к электрону незначительны, химические свойства элементов и их соединений изменяются мало.

В группах (сверху вниз) с увеличением заряда ядра атома возрастают энергия ионизации, относительная электроотрицательность элементов (ОЭО), нарастают неметаллические и кислотные свойства, уменьшаются металлические свойства элементов.

3. Кислотно-основные и окислительно-восстановительные свойства и закономерности их изменения

Элементы d-блока находящиеся в III, IV, V, VI, VII B группах имеют незавершенный d-электронный слой (предвнешний эн. уровень). Такие электронные оболочки неустойчивы. Этим объясняется переменная валентность и возможность проявлять различные степени окисления d-элементов. Степени окисления элементов d-блока в соединениях всегда только положительные.

Соединения с высшей степенью окисления проявляют кислотные и окислительные свойства (в растворах представлены кислородсодержащими анионами). Соединения с низшей степенью окисления - основные и восстановительные свойства (в растворах представлены катионами). Соединения с промежуточной степенью окисления - проявляют амфотерные свойства.

Например: CrO основной оксид, Cr2O3 - амфотерный оксид, CrO3 - кислотный оксид.

В периоде с возрастанием заряда ядра атома уменьшается устойчивость соединений с высшей степенью окисления, возрастают их окислительные свойства.

В группах увеличивается устойчивость соединений с высшей степенью окисления, уменьшаются окислительные и возрастают восстановительные свойства элементов.

4. Окислительно-восстановительные свойства d-элементов в организме человека

Вследствие разнообразия степеней окисления для химии 3d-элементов характерны окислительно-восстановительные реакции.

В свою очередь, способность 3d-элементов изменять степень окисления, выступая в роли окислителей или восстановителей, лежит в основе большого количества биологически важных реакций.

В ходе эволюции природа отбирала элементы в такой степени окисления, чтобы они не были ни сильными окислителями, ни сильными восстановителями.

Нахождение в организме человека d-элементов в высшей степени окисления возможно только в том случае, если эти элементы проявляют слабые окислительно-восстановительные свойства.

Например, Мо+6 в комплексных соединениях в организме в организме имеет степень окисления +5 и +6.

Катионы Fe+3 и Cu+2 в биологических средах не проявляют восстановительных свойств.

Существование соединений в низших степенях окисления оправдано для организма. Ионы Mn+2, Co+2, Fe+3 при рН физиологических жидкостей не являются сильными восстановителями. Окружающие их лиганды стабилизируют ионы именно в этих степенях окисления.

5. Комплексообразующая способность d-элементов

Возможность создания химических связей с участием d-электронов и свободных d-орбиталей обуславливает ярко выраженную способность d-элементов к образованию устойчивых комплексных соединений.

При низких степенях окисления для d-элементов более характерны катионные, а при высоких - анионные октаэдрические комплексы.

КЧ d-элементов непостоянны, это четные числа от 4 до 8, реже 10,12.

Используя незаполненные d-орбитали и неподеленные пары d-электронов на предвнешнем электронном слое, d-элементы способны выступать как донорами электронов - дативная связь, так и акцепторами электронов.

Пример соединений с дативной связью: [HgI]Ї, [CdCl4]Ї.

6. Металлоферменты

Октаэдрическое строение иона комплексообразователя определяется способностью его орбиталей к d2sp3-гибридизаци. Например, для хрома (III), d2sp3-гибридизация будет выглядеть следующим образом:

Бионеорганические комплексы d-элементов с белковыми молекулами называют биокластерами. Внутри биокластера находится полость, в которой находится ион металла определенного размера, размер иона должен точно совпадать с диаметром полости биокластера. Металл взаимодействует с донорными атомами связующих групп: гидроксильные -ОНЇ, сульфгидрильные -SHЇ, карбоксильные -СООЇ, аминогруппы белков или аминокислот - NH2.

Биокластеры, полости которых образуют центры ферментов, называют металлоферментами.

В зависимости от выполняемой функции биокластеры условно подразделяют на:

- транспортные, доставляют организму кислород и биометаллы. Хорошими транспортными формами м/б комплексы металлов с АМК. В качестве координирующего металла могут выступать: Со, Ni, Zn, Fe. Например - трансферрин.

- аккумуляторные, накопительные. Например - миоглобин и ферритин.

- биокатализаторы и активаторы инертных процессов.

Реакции, катализируемые этими ферментами подразделяются на:

Кислотно-основные реакции. Карбоангидраза катализирует процесс обратимой гидратации CO2 в живых организмах.

Окислительно-восстановительные.

Катализируются металлоферментами, в которых металл обратимо изменяет степень окисления.

А. Карбоангидраза, карбоксипептидаза, алкогольдегидрогеназа.

Карбоангидраза - Zn содержащий фермент. Фермент крови, содержится в эритроцитах. Карбоангидраза катализирует процесс обратимой гидратации CO2, также катализирует реакции гидролиза, в которых участвует карбоксильная группа субстрата.

Н2О + СО2 - Н2СО3 - Н+ + НСО3Ї (механизм "цинк-вода")

ОНЇ + СО2 - НСО3Ї (механизм "цинк-гидроксид")

Координационное число цинка 4. Три координационные места заняты аминокислотами, четвертая орбиталь связывает воду или гидроксильную группу.

Механизм действия:

Обратимая гидратация CO2 в активном центре карбоангидразы

Карбоксипептидаза Zn содержащий фермент. Объектами концентрации являются печень, кишечник, поджелудочная железа.

Участвует в реакциях гидролиза пептидных связей.

Схема взаимодействия цинка карбоксипептидазы с субстратом ("цинк-карбонил"):

Схема реакции гидролиза пептидных связей карбоксипетидазы:

Алкогольдегидрогеназа это -содержащий фермент.

Б. Цитохромы, каталаза, пероксидаза.

Цитохром С. (см лекцию КС). Гемсодержащий фермент, имеет октаэдрическое строение.

Перенос электронов в окислительно-восстановительной цепи с участием этого фермента осуществляется за счет изменения состояния железа:

ЦХ*Fe3+ + ? - ЦХ*Fe2+

Группы ферментов, катализирующие реакции окисления водородпероксидом, называются каталазами и пероксидазами. Они имеют в своей структуре гем, центральный атомом является Fe3+. Лигандное окружение в случае каталазы представлено АМК (гистидин, тирозин), в случае пероксидазы - лигандами являются белки. Концентрируются ферменты в крови и в тканях. Каталаза ускоряет разложение пероксида водорода, образующегося в результате реакций метаболизма:

Н2О2 + Н2О2 -каталаза- 2 Н2О + О2

Фермент пероксидаза ускоряет реакции окисления органических веществ (RH) пероксидом водорода:

Н2О2 + Н2О*RH -пероксидаза- 2 Н2О + RCOOH

В. СОД, ОКГ, ЦХО, ЦП.

СОД - супероксиддисмутаза - медьсодержащий белок. Ускоряет реакцию разложения супероксид-иона , свободный радикал. Этот радикал вступая во взаимодействие с компонентами клети разрушает ее. СОД переводит супероксид-ион в пероксид водорода. Который, в свою очередь, разлагается в организме под действием фермента каталазы.

Схематически процесс можно представить:

ОКГ - оксигеназы - ферменты, активирующие молекулу кислорода, которая участвует в процессе окисления органических соединений. Оксигеназы присоединяют оба атома кислорода с образованием пероксидной цепочки.

Механизм действия оксигеназ можно представить следующим образом:

Цитохромоксидаза - ЦХО - важнейший дыхательный фермент.

Катализирует завершающий этап тканевого дыхания. В ходе каталитического процесса степень окисления меди ЦХО обратимо изменяется: Cu2+-Cu1+.

Окисленная форма ЦХО (Cu2+) принимает электроны, переходя в восстановленную форму (Cu1+), окисляющуюся молекулярным кислородом, который сам при этом восстанавливается.

Затем кислород принимает протоны из окружающей среды и превращается в воду. Схема действия ЦХО:

Церулоплазмин - ЦП - медьсодержащий белок содержится в плазме млекопитающих. ЦП содержит 8 атомов меди на 1 молекулу белка. ЦП участвует в окислении железа:

Параллельно идет процесс окисления протонированных субстратов (RH) с образованием свободнорадикальных промежуточных продуктов:

HR > R + H+ + ?

В то же время ЦП катализирует восстановление кислорода до воды:

О2 + 4? + 4Н+ >ЦП> 2Н2О

Выполняя транспортную функцию, ЦП регулирует баланс меди и обеспечивает выведение избытка меди из организма.

7. Железо, кобальт, хром, марганец, цинк, медь, молибден в организме: содержание, биологическая роль

Элемент

Содержание в организме (взрослого человека)

Биологическая роль

Fe

5 г (около 70% в гемоглобине)

Входит в состав гемоглобина, т.е. принимает участие в транспорте кислорода, обеспечивает процесс дыхания живых организмов.

Входит в состав ферментов цитохромов, каталазы, пероксидазы.

В связанной форме находится в некоторых белках, выполняющих роль переносчиков железа.

Co

Входит в состав витамина В12.

Влияет на углеводный, минеральный, белковый и жировой обмен, принимает участие в кроветворении.

Cr

6 мг

Биогенный элемент.

Mn

0,36 моль

Входит в состав ферментов аргиназа, холинестераза, фосфоглюкомутаза, пируваткарбоксилаза и д.р.

Участвует в синтезе витаминов С и В, доказано его участие в синтезе хлорофилла.

Участвует в процессе аккумуляции и переноса эрги.

Zn

Входит в состав ферментов катализирующих гидролиз пептидов, белков, некоторых эфиров и альдегтдов.

Cu

1,1 ммоль

Входит в состав ферментов окигеназ и гидролаз.

Участвует в кроветворении.

Mo

Входит в состав ферментов, катализирующих ОВР: ксанингидрогеназа, ксантиноксидаза, альдегидоксидаза и д.р.

Важный микроэлемент для растений: принимает участие в мягкой фиксации азота.





17.06.2012
Большое обновление Большой Научной Библиотеки  рефераты
12.06.2012
Конкурс в самом разгаре не пропустите Новости  рефераты
08.06.2012
Мы проводим опрос, а также небольшой конкурс  рефераты
05.06.2012
Сена дизайна и структуры сайта научной библиотеки  рефераты
04.06.2012
Переезд на новый хостинг  рефераты
30.05.2012
Работа над улучшением структуры сайта научной библиотеки  рефераты
27.05.2012
Работа над новым дизайном сайта библиотеки  рефераты

рефераты
©2011