|
Изучение кластеров и их свойств в области химии
Изучение кластеров и их свойств в области химии
Министерство образования и науки Украины Реферат по теме:«Изучение кластеров и их свойств в области химии»Донецк 2008ВведениеЭта работа посвящена непостоянным группам частиц в химии. Важное значение таких групп уже давно осознавалось в отдельных областях химии - учении о растворах, коллоидной химии, теории кристаллизации, поэтому понятие возникло гораздо раньше, чем подходящий термин. В разных областях химии утверждалось независимо и под собственным именем. Ассоциаты, зародыши, комплексы, сиботаксические группы, агрегаты, сольваты - все эти названия в конце концов обозначают примерно одно и то же. Разнобой в терминологии не случаен, он отражает историю осмысления понятия. Ныне слово «кластер» оказалось своего рода знаменем, под которым собираются ограниченные коллективы частиц из самых разных областей; представление о кластерах как малых коллективах имеет значение не только в химии, но и в астрономии, физике, биологии, социологии, по-видимому, оно прочно утверждается в общей теории систем (это обусловливает популярность термина). Но мы ограничиваемся химическими объектами.Если отвлечься от неизбежных злоупотреблений модой, то причины бурного роста химической литературы, в которой фигурирует «кластер», оказываются вполне серьезными и вескими.Современные физико-химические методы эксперимента позволили перейти от гипотез о существовании непостоянных групп к их фактическому изучению, а развитие вычислительной техники сделало возможным теоретическое «построение» кластеров и расчет их свойств при тех или иных предположениях о взаимодействиях между членами группы.Эти исследования, захватывающие все глубже строение и превращение объектов химии (в особенности недоступный прежде мир короткоживущих форм и состояний), приводят к пониманию того, что кластеры - не экзотика, а весьма общая форма (или состояние) вещества.Свидетельство злободневности темы - появление не только многих сотен и даже тысяч статей, более или менее частных, но и попытки ее общего обзора.1. Общие сведенья о понятии «кластер»Представления о непостоянных агрегатах атомов и молекул восходят ко второй половине прошлого века, когда в химии утвердилось атомно-молекулярное учение, а в физике - «кинетическая теория материи». Такие представления не раз выдвигались для объяснения поведения жидкостей и жидких растворов, образования осадков и коллоидов, электропроводности жидких электролитов и электрических разрядов в газах. К.М. Гульдберг и П. Вааге, Д.И. Менделеев, В. Рамзай в химии, Дж.К. Максвелл, В.К. Рентген, П. Ланжевен в физике и много других ученых, менее знаменитых, так или иначе участвовали в постепенном становлении понятия, ныне обозначаемого термином «кластер». Сам этот термин впервые появился в научной литературе в 1937 году в известных работах Дж. Е. Майера по статистической механике неидеальных газов. Первоначально он означал группу атомов или молекул, выделяемую в газе по определенным формально-математическим признакам. Здесь введение кластеров было еще чисто математическим шагом. (Наиболее ясно это иллюстрируется тем, что в теории Майера число кластеров может быть отрицательным.) Однако вскоре, в особенности благодаря Я.И. Френкелю, стало ясно, что при описании неидеальных газов, и особенно предпереходных состояний, можно опираться на представление о действительном образовании групп, или агрегатов, молекул (Я.И. Френкель назвал их «гетерофазными флюктуациями»). Строгая теория неидеальных газов, основанная на представлении о физических кластерах, была развита в статистической механике Т. Хиллом в 1955 году.В течение 50-х годов название и понятие «кластер» стало весьма употребительным в теориях конденсации и вообще образования новой фазы. На конец десятилетия приходится и дальнейшее распространение области применения этого понятия: кластерными соединениями, по предложению Ф. Коттона, были названы химические соединения (например, многоядерные карбонилы металлов и их производные), содержащие несколько связанных друг с другом атомов металла, которые окружены лигандами.В течение второй половины 60-х годов представления о кластерах делаются все более популярными в разных областях химии, в теории жидкого состояния, в учении о растворах и соединениях непостоянного состава (здесь новым явилось продвижение представления о кластерах из области исследований твердых растворов в смежную область нестехиометрических твердых соединений), в плазмохимии, в элементоорганической химии. В конце 60-х - начале 70-х годов кластеры становятся объектом теоретических («компьютерных») исследований.Можно считать, что к началу нашего десятилетия становление общего понятия «кластер» завершилось.Разные авторы вкладывают в термин «кластер» неодинаковое содержание, хотя во всех случаях сохраняется оттенок первоначального значения этого английского слова (cluster) - груда, скопление, пучок, гроздь, группа. В дальнейшем мы будем придерживаться следующего определения: кластер - это группа из небольшого (счетного) и, вообще говоря, переменного числа взаимодействующих частиц (атомов, молекул, ионов).2. Частицы в кластереЕстественно спросить, каковы нижняя и верхняя границы числа частиц в кластере? Ответ на первую половину вопроса очевиден: минимальное число членов, образующих группу, равно двум. Верхняя граница, напротив, размыта и неотчетлива. Но ясно, что она должна находиться в той области, где добавление еще одного члена уже не изменяет свойств кластера: в этой области и заканчивается переход из количества в качество. Ниже мы увидим, что эта граница не вполне однозначна, но практически большая часть изменений, существенных для химика, заканчивается при ~103 частицах в группе.Следует различать свободные кластеры и стабилизированные теми или иными факторами; в последнем случае кластер имеет более сложный состав и приобретает структуру, в которой целесообразно выделять «тело» кластера (т. е. собственно группу взаимодействующих частиц рассматриваемого типа) и стабилизирующие элементы, например «оболочку» из лигандов, или центральную частицу (часто это ион), или совокупность того и другого. Наличие или отсутствие стабилизации резко сказывается на поведении кластеров, и прежде всего на продолжительности их жизни: для стабилизированных кластеров она такая же, как для обычных молекул, для нестабилизированных нижней границей времени жизни разумно считать продолжительность столкновения в газокинетическом смысле, т. е. 10~13-К)-12 с; то же можно распространить и на простые и сложные кластеры в жидкой фазе. С точки зрения химика, кажется правильным считать кластерами только такие образования, которые существуют достаточно долго, чтобы участвовать в химическом превращении в качестве самостоятельной единицы. При этом остается неясным, при какой же продолжительности жизни кластеров их образование становится кинетически ощутимым. Фактических данных для ответа на этот вопрос мало, но с ростом «разрешающей способности» экспериментальных методов постепенно выясняется важная кинетическая роль даже весьма короткоживущих состояний.Разнообразие типов кластеров определяется возможностью сочетания различных сред и способов стабилизации с множеством вариантов построения тела кластера из частиц той или иной природы.Не приводя здесь развернутой классификации, поясним это на примере. В системах, состоящих из компонента А, образующего тело кластеров Ag, и компонента В, функция последнего может отвечать одному из четырех вариантов: 1) ВАЯ: В - заряд (электрон, позитрон) или центральная частица (ион, молекула); 2) АВ,: В - лиганд; 3) АА, Воэ: В - матрица; 4) AgB: В - второй компонент тела кластера. Реализация этих вариантов различна в газовых, жидких, аморфных и кристаллических средах. Так, для варианта «BAg» примерами являются соответственно: зародыши пара, конденсирующегося на молекулярных ядрах; сольваты ионов и молекул в жидких растворах; металлические кластеры в металлсилицидных, металлфосфидных и других стеклах; субоксиды щелочных металлов. Для варианта «АВ» примерами служат мицеллы поверхностно активных веществ (ПАВ) в жидких средах; кластеры воды в аморфных органических полимерах; кластерные кристаллы (металлы в цеолитах) и, наконец, адсорбаты кластерной дисперсности для сред, представляющих собой межфазные поверхности. Аналогично этому для разных сред легко найти случаи, отвечающие вариантам «АгВг» и «AgBj». При трех компонентах - А, В и С - возможны уже десять вариантов их функций в построении тела кластера и его стабилизации. И почти для каждой из сред, включая меж-, фазные поверхности, можно указать примеры реализации этих вариантов.Таково разнообразие наших объектов.3. Методы исследованияВ принципе для исследования свойств и поведения кластеров различных типов могут быть использованы решительно все методы, какими пользуется химия вообще. Однако пригодность и степень эффективности того или иного из них критическим образом зависят от устойчивости исследуемых кластеров; естественно, что к устойчивым системам применимы более многочисленные и более разнообразные по принципам методы наблюдений и измерений. Кроме того, имеет значение, находятся кластеры в равновесии со средой или нет: в первом случае концентрация их постоянна во времени, хотя и мала для короткоживущих объединений, неравновесные же группы частиц приходится специально создавать.При малой продолжительности жизни кластеров внимание исследователя невольно сосредоточивается на процессах их возникновения и разрушения, если же продолжительность жизни велика, то занимаются прежде всего изучением «стационарных» свойств этих объектов.При работе с прочно стабилизированными или хотя бы с равновесными кластерами их приготовление и исследование легко могут быть разделены во времени и пространстве.Для получения стабилизированных кластеров чаще всего используют процессы образования новой фазы: эти процессы буквально останавливают в их зародыше, фиксируя тем или иным способом возникающие группы частиц.Принцип остановки агрегации лежит в основе различных способов синтезов кластерных соединений из одноядерных и олигоядерных комплексов металлов. Этот же прием хорошо известен в гетерогенном катализе при получении «сверхвысокодисперсных» металлов-катализаторов, закрепленных на носителях.Своеобразными носителями для металлических кластеров стали в последние годы матрицы из твердых газов, на которых конденсируют пары металлов. Это важный и обещающий способ контролируемой стабилизации небольших металлических кластеров и вместе с тем способ синтеза не обычных кластерных соединений. Используя матрицы из твердой окиси углерода, получили, например, Ni2CO и Ni4CO, а на матрицах из твердого кислорода - Rh2(O2)n (л=1-4) и Rhs(O2)n, (m=2 или 6).Реже для получения стабилизированных кластеров при" бегают к дезагрегации сплошной фазы. Интересный при" мер - введение жидких металлов в цеолиты под давлением» после снятия давления 15-20-атомные кластеры галлия» олова, висмута остаются замурованными в полостях цеолита, образуя своего рода «кластерный кристалл». Это создает редкую возможность изучать поведение упорядоченного коллектива кластеров.Для исследования стабилизированных кластеров применяют те же методы, что и в физической химии вообще, чаще других - спектральные (особенно в дальней инфракрасной области) и радиоспектроскопические, прежде всего методы ядерного магнитного резонанса (ЯМР).Техника исследований кластеров приобретает своеобразие тогда, когда объекты являются неравновесными и короткоживущими. В таких исследованиях - они относятся главным образом к кластерам в газовой среде - экспериментальные устройства включают в себя сопряженные узлы генерации, выделения (если нужно) и собственно исследования кластеров.Неравновесные кластеры в газовой среде получают путем адиабатического расширения пара в устройствах различных типов. Наибольший стаж имеет камера Вильсона (система с поршневым расширением). Много позже были созданы методы работы с потоками, расширяющимися в сверхзвуковых соплах; сюда же можно отнести и технику молекулярных пучков.Кстати сказать, пучки кластеров дейтерия или трития предложено вводить в горячую плазму при управляемом термоядерном синтезе. Эффективность такого способа подачи топлива определяется значительно большей плотностью вещества в кластерных пучках по сравнению с молекулярными. Этот проект - главная цель фундаментальных исследований кластеров, которые ведутся в одной из крупных лабораторий ФРГ в Карлсруэ.Заряженные кластеры в газовой среде генерируют посредством электрического разряда или (ныне все чаще) путем воздействия ионизирующих излучений. Различные излучения используют для создания заряженных кластеров и в газах, и в. конденсированных средах. Ионная бомбардировка поверхности твердых тел позволяет получать также и заряженные, и нейтральные кластеры в паровой фазе обычно в сверхравновесных концентрациях.Экспериментальные трудности исследования свободных кластеров в неравновесных системах усугубляются практической невозможностью получения кластеров одного размера. Поэтому измеряемые величины часто представляют результат усреднения, при котором возможно «замазывание» немонотонных зависимостей свойство - число частиц в кластере.Наиболее распространенным и наиболее прямым методом наблюдения кластеров в газовой фазе является в настоящее время масс-спектрометрия. Предложено много вариантов систем напуска, обеспечивающих доставку кластеров из зоны, где они образовались, в ионный источник спектрометра. С этой стороной техники дело обстоит достаточно удовлетворительно. Важно также уменьшить разрушение кластеров в ионном источнике под влиянием ионизирующего излучения. Традиционные приборы, в которых ионизация объекта достигается электронным ударом, в этом отношении малоудачны; эффективнее фотоионизационные источники, хотя и в этом случае первоначальные концентрации кластеров могут искажаться. Разумеется, степень искажения сильно зависит от прочности кластера, а также от продолжительности промежутка времени между ионизацией и регистрацией иона. («Времяпролетная» масс-спектрометрия в этом смысле предпочтительнее.)Для характеристики ионных кластеров в газах масс-спектрометрия также весьма эффективна, но здесь распространен и другой метод-измерение подвижности ионов. В 70-х годах для исследования свободных кластеров, возникающих в сверхзвуковых газовых струях, был применен метод дифракции электронов; удалось регистрировать дифракционную картину от кластеров аргона из ~50 атомов с возрастом ~2-10~4 с. Перспективна и оптическая спектроскопия кластерных пучков: их низкая температура сильно упрощает картину спектра и делает возможным его анализ.В исследованиях поверхностных кластеров эффективна автоионная микроскопия и фотоэлектронная спектроскопия.В последнее время приобретают значение новые спектроскопические методы изучения вещества - измерения рентгено- и фотоэлектронных спектров, но в исследованиях свободных кластеров их еще не применяли, тем более что анализ полученных данных здесь сложен и неоднозначен. По-видимому, наиболее информативными станут комплексные методы, сочетающие масс-спектрометрию, в особенности времяпролетную масс-спектрометрию высокого разрешения, со спектральными методами разных диапазонов частот. В частности, большой интерес представляет лазерная спектроскопия комбинационного рассеяния света. Этот метод эффективен для измерения низких частот колебаний, характерных для связей между частицами в кластерах. Еще важнее, что он может обеспечить весьма быструю, до времен порядка 10~8 с, регистрацию спектров, а значит, исследование короткоживущих кластеров. Вторая большая категория методов исследования - расчетно-теоретическая.Компьютерная техника оказывается «математическим микроскопом», а иногда и сверхскоростной кинокамерой или даже и тем и другим, словом, инструментом, который позволяет наблюдать быстрые превращения кластеров.Ценность машинных методов тем выше, чем труднее объект для прямого экспериментального изучения; таковы в особенности свободные кластеры из нескольких десятков частиц.Расчетно-теоретические методы исследования следует подразделить по уровню детализации на молекулярно-физические и квантовомеханические. Методы, опирающиеся на идеи молекулярной физики, состоят в машинном анализе поведения кластера как системы N частиц, взаимодействие между которыми описывается некоторым потенциалом (например, потенциалом Лен нарда-Джонса). В квантово-механических методах кластер рассматривается как молекула; при тех или иных допущениях исследуются взаимодействия электронов в этой системе. Расчет свойства кластеров на основе представлений молекулярной физики был начат в связи с необходимостью определения термодинамических характеристик малых зародышей в теории конденсации: совершенно очевидно, что «капиллярное приближение» классической теории конденсации, основанное на использовании величины поверхностной энергии малых капель, непригодно для частиц из ~ 10 атомов. Первая работа в этом направлении (в ней были рассмотрены кластеры максимум из восьми частиц) относится к 1952 году. В такого рода вычислениях и время счета, и необходимый объем машинной памяти возрастают пропорционально кубу числа атомов в кластере, поэтому исследования более крупных кластеров начались много позже, примерно через полтора десятилетия, когда возможности вычислительной техники стали достаточными, а решаемые задачи - еще более актуальными (к общим потребностям развития теории конденсации добавились запросы со стороны технологии получения конденсированных пленок, в особенности в технике полупроводников и электронике). Со второй половины 60-х годов начинается разработка специальных расчетных методов для исследования свойств кластеров на основе представлений молекулярной физики.Ныне распространен метод молекулярной динамики и метод Монте-Карло. Сущность метода молекулярной динамики заключается в машинном решении уравнений движения системы из заданного числа частиц. Уравнения движения Ньютона связывают между собой координаты, скорость и энергию частицы; их интегрирование дает координаты и скорости всех частиц кластера в функции от времени. Свойства кластера находят, усредняя эти данные. Применение метода Монте-Карло опирается на эргодическую гипотезу статистической механики о возможности представления временной последовательности случайных конфигураций динамической системы мгновенным состоянием статистического ансамбля. В соответствии с этим принцип расчета состоит в усреднении по ансамблю случайных конфигураций, вероятность каждой из которых зависит от ее энергии экспоненциально.Общим для обоих методов является вопрос о потенциале UN, описывающем взаимодействие N частиц в кластере. Вообще говоря, этот потенциал есть функция Хх.., X;.., Xv, где X; - ряд чисел, описывающих положение центра и ориентацию t'-й молекулы. Достаточно обоснованной является аппроксимация UN суммой потенциальных энергий парных взаимодействий X,).Формы и параметры потенциала Utj могут быть различными; часто заменяют X;, X] просто на межмолекулярное расстояние rtj. Наиболее популярны (в силу простоты и удобства) потенциалы Леннарда-Джонса (обычно т=6, п=12) и потенциал Морзе. В случае многоатомных частиц, образующих кластер, выражения усложняются, так как необходим учет ориентации. Так, для молекул воды предложено несколько потенциальных функций; одной из наиболее простых и удачных является потенциал U (X;, Xj^Ut (rtJ) + S (rti) UEL (Х„ X,-), (4) где UEL - потенциал взаимодействия двух массивов заряда (отражающих распределение зарядов в молекуле воды), который учитывает водородные связи между молекулами. Все эти формулы являются эмпирическими; их параметры определяют по свойствам соответствующих веществ.Методы молекулярной динамики и Монте-Карло дают сведения прежде всего о термодинамических характеристиках кластеров, а отчасти и об эволюции структуры (взаимного расположения частиц) кластера во времени.Результаты большинства машинных исследований термодинамических свойств кластеров относятся не к реальным, а к гипотетическим объектам, например к кластерам из частиц, которые взаимодействуют между собой, согласно потенциалу Леннарда-Джонса, или к чисто «кулонов-ским» кластерам и т.д. Поэтому не удивительно, что при исследовании энергетических характеристик кластеров разными методами получаются существенно различные результаты в отношении величины избыточной энергии и ее зависимости от числа атомов. Однако многие выводы, полученные 'для таких условных моделей, имеют общее значение и дают важные сведения о свойствах кластеров.Более глубокий уровень детализации связан с применением квантовой механики.Методы расчета кластеров были созданы в ходе развития теории химической связи; долгое время (до конца 60-х годов) объектами приложения этих методов были не кластеры, а обыкновенные молекулы. К квантовомеханическим расчетам кластеров приступили специалисты, шедшие с двух сторон: одни занимались многоядерными металлоорганическими неорганическими комплексами, другие исследовали кластеры в качестве моделей твердого тела.В обоих случаях кластеры первоначально были вспомогательной моделью, переходной к изучаемой, но постепенно выяснилась общность этих объектов.Трудности расчета многоатомных молекул и недостаточная мощность компьютеров заставляли идти на многочисленные упрощающие допущения, поэтому в 60-х годах машинные исследования кластеров в квантовой химии исчислялись единицами. Число и эффективность исследований кластеров стали быстро возрастать с 70-х годов в связи с созданием новых методов квантовохимических расчетов, в особенности так называемого метода «X-рассеянных волн», словно специально задуманного для этих целей.Квантовомеханические расчеты кластеров дают для химика результаты двоякого рода. Во-первых, они позволяют судить об энергетике кластеров, о зависимости энергетических характеристик от расположения атомов. (Заметим еще раз, что ныне от подобных расчетов ожидают прежде всего выяснения тенденций, характера зависимости, а не абсолютных значений тех или иных величин. Правда, результаты новейших расчетов позволяют надеяться и на большее.) Такие зависимости можно сопоставлять с результатами вычислений методами молекулярной динамики и Монте-Карло, использующими те или иные эмпирические потенциалы взаимодействий между атомами. Таким образом можно получить сравнительное представление о возможностях разных расчетных методов. Работы в этом направлении уже начаты; найдено качественное согласие выводов о наиболее устойчивой структуре 13-атомных металлических кластеров.Во-вторых, квантовомеханические расчеты дают результаты, так сказать, незаменимые, относящиеся к электронному строению кластеров. Здесь опять-таки наибольший интерес представляет тенденция - как изменяется электронная структура объекта при переходе от одиночного атома (молекулы) к кластеру, а затем к микроскопическому кристаллу.Объектами большинства квантовохимических исследований остаются простые кластеры, образованные атомами металлов и отчасти других элементов. Рекордными являются работы по расчету 40-50-атомных кластеров. Недавно проведены также некоторые работы, относящиеся и к более сложным веществам (фтористому водороду, хлористому бериллию и др.). Начаты исследования ионов, а также сольватированных электронов.Многочисленны расчетные квантовохимические исследования, которые имеют своим объектом кластеры не как самостоятельные объекты, а как упрощенные модели твердого тела или его поверхности.4. Образование кластеровКонкретные процессы, в которых возникают кластеры, столь же многообразны, как и типы кластеров. Однако это многообразие определяется скорее различиями в природе частиц и особенно в способах стабилизации кластеров. Отвлекаясь от таких «частностей», можно усмотреть лишь два общих пути образования кластеров - агрегация в кластер одиночных («мономерных») частиц или кластеров меньшего размера и дезагрегация до кластеров больших коллективов взаимодействующих частиц.Самый наглядный и в то же время самый важный пример агрегативного пути образования кластеров - зарождение новой фазы. Это частный случай весьма общей категории процессов качественного изменения структуры; для всех таких процессов характерно первоначальное возникновение зародышей новой структуры в недрах старой. Кластерообразование и последующий рост новой фазы - интересное средство «усиления», таковы фотография, декорирование поверхностей, наблюдение элементарных частиц с помощью камер Вильсона и пузырьковых камер.К явлениям образования кластеров в фазовых переходах близки уже упоминавшиеся предпереходные явления; здесь до возникновения новой фазы дело не доходит, и кластеры остаются как бы несостоявшимися фазами. Они-то и были названы гетерофазными флюктуациями, поскольку они находятся в динамическом равновесии с материнской фазой, т.е. непрерывно возникают и распадаются.Образование кластеров путем агрегации происходит и во многих иных процессах, не связанных с возникновением новых фаз, например при сольватации ионов в газах и жидкостях. (Так, согласно теории И.П. Стаханова, шаровая молния состоит именно из гидратированных ионов, возникающих в воздухе при «обыкновенной» молнии.) Просто в жидкостях, особенно полярных, молекулы также легко ассоциируются в кластеры. В частности, известны различные кластерные модели строения жидкой воды. Как и в предпереходных состояниях, такие кластеры находятся в динамическом равновесии со средой; разница в том, что они не являются представителями или провозвестниками новой фазы в старой.Все сказанное относится и к поверхностным кластерам: они могут возникать и при гетерогенном зарождении новой фазы, и просто при адсорбции, образованием новой фазы не сопровождающейся, В качестве примера приведем малоизвестный случай металлических кластеров - продуктов взаимодействия твердых поверхностей с растворами металлов (наиболее известный пример подобных растворов- серебряная вода). В объеме раствора металлические кластеры не обнаруживаются; они возникают и стабилизируются только благодаря адсорбции на поверхности. Весьма интересно, что они способны к обратимой дегидратации (вообще десольватации), что доказано по спектрам поглощения этих систем.Образование кластеров путем дезагрегации больших коллективов частиц возможно при испарении конденсированных фаз, а также при растворении твердых веществ в жидкостях и плотных газах. Эти процессы также связаны с возникновением новых фаз, но менее плотных, чем исходная. Кластеры и в этом случае могут быть либо промежуточными формами на пути образования новой фазы, либо гетерофазными флюктуациями, характеризующими предпереходное состояние.Дезагрегация сплошной фазы до кластеров может быть и вовсе не связана с возникновением новых фаз: существует ряд процессов «диспергирования» конденсированных фаз, включая механическое дробление, электроэрозию, ионную бомбардировку, а также воздействие активных сред. Так, окисление сажи озоном сопровождается «откалыванием» от зерен углерода кластеров из нескольких десятков атомов.Еще один своеобразный случай «химического» диспергирования твердой фазы - образование из нее неравновесных поверхностных кластеров вследствие протекания реакции на поверхности.Посередине между случаями образования кластеров путем агрегации и путем дезагрегации лежат процессы образования одних кластеров из других без изменения числа частиц в теле кластера. Это главным образом разные реакции стабилизации или дестабилизации кластеров. Важный пример - сольватация электрона, «инжектируемого» в жидкость или возникающего в ней. Кластеры, существующие в ассоциированных жидкостях, таких, как спирты, действуют в качестве ловушек для электрона. Захват электрона и последующая релаксация стабилизированного спиртового кластера протекают за ? 10~12 с.Процессы образования кластеров могут быть классифицированы и иначе - по тому, равновесной или неравновесной является система, в которой кластеры возникают и существуют. Такое деление имеет смысл именно при рассмотрении систем в целом; оно позволяет увидеть физико-химические причины, обусловливающие возникновение кластеров в обоих этих случаях.Образование кластеров, находящихся в равновесии с материнской средой, есть попросту условие наибольшей устойчивости этой среды: «микрогетерогенность» плотных газов, жидкостей, жидких и твердых растворов, нестехиометрических соединений обеспечивает минимальность свободной энергии данных систем. Разумеется, это возможно благодаря взаимодействию между частицами, из которых состоит кластер, и чем такое взаимодействие сильнее, тем продолжительнее живет каждый одиночный кластер равновесной системы.Последнее замечание требует по меньшей мере двух пояснений. Во-первых, оно подразумевает, что даже в равновесной системе состояние отдельного кластера нельзя считать равновесным; в динамическом равновесии со средой находится множество кластеров, каждый из которых обменивается с нею частицами, меняя размер, положение и форму. Во-вторых, образование кластера и продолжительность его жизни определяются не только «внутрикластерными» взаимодействиями частиц, но и взаимодействием кластеров с частицами среды, а в достаточно плотных средах - и друг с другом. Интересный пример: «мерцающие кластеры» - модель, предложенная для описания жидкой воды. Эти кластеры непрерывно изменяют свой размер, то увеличиваясь, то уменьшаясь вплоть до полного разрушения; среднее время их жизни оценивается в 10~10. Несколько иначе выглядит ситуация в неравновесных системах. Здесь кластеры образуются (и исчезают) в качестве некоторых переходных форм на пути системы из одного состояния в другое, точнее, может быть, кластеры сами представляют собой этот путь эволюции системы. Равновесия множества кластеров со средой уже нет, а ход процесса на определенном этапе обусловливается именно межкластерными взаимодействиями.5. Кинетика образования кластеровКапитальную важность имеют вопросы механизма и кинетики образования кластеров, но вопросы эти почти не изучены. Например, совершенно не ясен механизм агрегации мономерных частиц в кластер. Рассматривая реакции поштучного присоединения мономерных частиц к растущему кластеру и особенно соединения двух кластеров в третий, нужно найти ответ на вопрос, как формируются стабильные конфигурации: в частности, при построении кластеров из атомов видны легкие переходы 1-2-3-4-5, поскольку присоединение каждого следующего атома не требует нарушения стабильной конфигурации (треугольник переходит в тетраэдр, а тетраэдр - в тригональную бипирамиду). Однако дальнейший рост невозможен без затрат на перестройку исходной структуры. Как может происходить такая перестройка - вопрос, который пока лишь поставлен. Не исключено и то, что рост идет через неравновесные конфигурации, а равновесные возникают в результате релаксации свободного кластера.По существу, то же самое относится и к образованию кластеров путем дезагрегации сплошной фазы: эти процессы изучены еще хуже, и механизмы их ждут своих исследователей.6. Строение и свойства кластеровВ простейших случаях однокомпонентных кластеров под структурой достаточно понимать взаимное расположение мономерных частиц, образующих кластер. Вообще же, как было сказано, в такой структуре надлежит различать «тело» кластера и стабилизирующие элементы.Кластеры, стабилизированные центральным ионом, по-видимому, всегда при достаточно большом размере имеют тенденцию к образованию «оболочечной», или «слоистой», структуры. В теории растворов хорошо известны понятия ближней и дальней сольватации, отвечающие первой, более прочно стабилизированной, и второй, более рыхлой, оболочкам в структуре кластера из молекул растворителя. То же наблюдается и для газовых сольватов. Так, судя по прочности кластеров Н+(Н21П, они состоят из «ядра» Н+, первой оболочки из 8 Н2 и второй оболочки, начинающейся с девятой молекулы Н2, причем энергия связи На во второй оболочке по меньшей мере вдвое ниже, чем в первой.Интересным аналогом подобных кластеров в химии твердого тела являются субоксиды рубидия и цезия - Rb8Os и CslxO3. Здесь атомы (ионы) кислорода находятся в центрах октаэдров из атомов щелочного металла, причем возможно дальнейшее их присоединение, т. е. следующей «оболочки»: например, Cs11O9+10Cs=3Cs7O (=Cs11O3Cs10).Для кластерных соединений металлов характерны структуры, в которых металлический остов обычно в виде многогранника одет стабилизирующей оболочкой из лигандов. Известны и более сложные структуры, в которых кластер укреплен не только оболочкой, но и небольшими атомами (С, иногда Н), внедренными внутрь остова, - путь обхода стерических препятствий, возникающих из-за недостатка места для лигандов на «поверхности» большого кластера. При сопоставлении членов ряда карбонильных и карбонил-карбидных кластеров кобальта: Goe(CO)ie, [Co6X Х(СО)1512-, [Со6(СО)14С]-, [Со8(0О)„С1*- и родия: Rhe (СО)1в, [Rh6(CO)15CP-, [Rhg(CO)19C], [Rh15 (СО)28С4]~ хорошо видно, как растет значение стабилизации «изнутри» за счет стабилизации «извне».Несколько примеров структур стабилизированных атомных кластеров представлено на. Еще больше усложняется структура стабилизированных кластеров, тело которых образовано двумя и более компонентами. Характерные примеры дают различные полимерные ионы - от анионов изо- и гетерополикислот до полимерных катионов гидроксокомплексов.Лучше других изучена так называемая структура Кегги-на Хт+М12О^-8 (она установлена в начале 30-х годов). Центральная тетраэдрическая полость в структуре Кегги-на образована четырьмя более простыми комбинациями октаэдров - «триплетами» М3О13; три октаэдра, совмещенные по ребрам. Подобные триплеты обнаружены и самостоятельно существующими - в виде молибдатного иона Мо3О|+ (с ним мы еще встретимся).С разной степенью подробности изучено по крайней ме* ре несколько сот различных полисоединений и еще больше только получено, но не охарактеризовано. Разнообразие этих веществ определяется несколькими обстоятельствами. Во-первых, помимо структуры типа «МцОдо» на основе тех же металл-кислородных октаэдров возможно построение многих других конфигураций. Во-вторых, в центре «координационной сферы» могут находиться различные ионы, стабилизирующие постройку. В-третьих, открыты соединения, в которых металл-кислородные блоки содержат «гетероатомы», т. е. основной металл может быть частично замещен другим. Наконец, существует своего рода иерархия полиионов: простейшими структурами являются упомянутые выше триплеты, затем комбинации типа структуры Кеггина и ей подобных и, далее, еще более сложные системы, в которых такие полиионы соединяются мостиками, чаще всего гидроксильными или кислородными, с образованием молекул коллоидного размера. То же самое характерно и для гидроксокомплексов в водных системах. Полиионы, таким образом, представляют своеобразную категорию кластерных соединений со многими дискретными формами разной сложности.Структура (в смысле возможного расположения частиц безотносительно к способу стабилизации) может быть троякого рода: цепочечной, т. е. линейной, или, точнее, одномерной (цепочка частиц может быть изогнутой, зигзагообразной и т. д.), сетчатой, или двумерной, и наконец, трехмерной, когда частицы, формирующие кластер, образуют сферу или многогранник.Кластерами с цепочечной структурой являются, например, частицы - Sg (g<8) и Cg (g<6)- в парах серы и углерода. Стабилизированные же цепочки в составе молекул и особенно кристаллов кластерных соединений широко известны и интенсивно изучаются.Нагляднейший пример двухмерных кластеров - зародыши адсорбированных фаз на поверхности твердых тел. Стабилизированные двухмерные кластеры часто составляют также элемент структуры слоистых нестехиометрических соединений. С некоторыми из них мы еще встретимся, но преимущественно будем рассматривать данные о трехмерных структурах свободных кластеров.Длительное время структуру простейших кластеров, в особенности металлических (при рассмотрении высокодисперсных нанесенных катализаторов), принимали такой же, как у теоретическому изучению структуры кластеров явились поразительные результаты наблюдений геометрических (кристаллографических) форм малых кристаллов, образующихся при конденсации паров и даже при химическом осаждении из газовой фазы: часто эти кристаллиты имели пента-тональную симметрию, несовместимую с возможностью построения бесконечной решетки.Разрешение этого парадокса содержится в работах главным образом Хоара и Пэйла, а также Бертона; найден ответ на оба вопроса: почему зародыши кристалла имеют тенденцию к пентагональной симметрии и как происходит переход от такого зародыша к одному из видов трансляционной симметрии бесконечной решетки.И расчет, и простые эксперименты на шаровых моделях показывают, что при ограниченном числе сфер плотнейшей оказывается не гранецентрированная кубическая упаковка и не гексагональная, а упаковка с пентагональной симметрией.соответствующих по типу решетки макрокристаллов. Типичные микрокристаллы в этом приближении имеют вид правильных многогранников с кубической или гексагональной структурой. Эта идеализация, как стало ясно в начале 70-х годов, плохо отражает действительность. Уже грубые чисто термодинамические оценки указывают на вероятность «аморфизации» частиц твердого тела с уменьшением его размера. Симметрия сохраняется и для более крупных кластеров с наиболее плотной возможной упаковкой. При 55 атомах треугольные гран» кластера образованы шестью атомами каждая и,отвечают Граням; (Ш) нормальной гране-центрированной упаковки. Любая из этих граней может поэтому служить основой для дальнейшего роста обычного кубического кристалла с периодической структурой. А с другой стороны, такие 55гатомные кластеры естественно рассматривать и как зародыш мельчайших пятиугольных кристалликов, наблюдаемых экспериментально: если кластер растет во всех направлениях (а не в одном), получающийся кристаллик остается пентагональным.Таким образом, поверхность чрезвычайно малых микрокристаллов должна быть образована исключительно гранями. Квадратная упаковка на поверхности таких микрокристаллов отсутствует; она появляется только с началом роста нормальных кубических кристалликов.Теоретический анализ показывает, что частицы металлов с нормальной гранецентрированной структурой становятся более устойчивыми, чем икосаэдроические (пентагональные) частицы при диаметре.Из сказанного видно, что со структурной проблематикой тесно связан вопрос о возможных изомерах кластеров. Машинные исследования выявляют множество локальных минимумов потенциальной энергии кластера данного размера; уже для пятиатомного кластера возможны две стабильные изомерные конфигурации - тригональная бипи-рамида и квадратная пирамида. (Кстати, в стереохимии известна та же ситуация: координационному числу 5 отвечают молекулы как бипирамидальной, так и пирамидальной структуры.) Для восьмиатомных кластеров установлено уже шесть стабильных изомерных структур, для девятиатомных - не менее 13; далее число изомеров растет катастрофически и пока остается неизвестным. Многие из минимумов потенциальной энергии настолько незначительно отличаются друг от друга, что структуру, отвечающую абсолютному минимуму, найти не удается.В 1976 году были опубликованы результаты исчерпывающего исследования изомерии 13-атомных леннард-джонсовских кластеров. Оказалось, что число структур, отвечающих локальным минимумам энергии, составляет 988. В этом случае однозначно установлена структура с абсолютным максимумом устойчивости - икосаэдр. Но общее число изомеров при таком потенциале взаимодействия составило только 38. Впрочем, ведь и это не мало! И такое обилие позволяет предполагать, что кластер из данного числа маломерных частиц может существовать в виде ряда «таутомерных» конфигураций, находящихся в равновесии друг с другом. При этом о структуре - в том смысле, какой принят в кристаллографии или при обсуждении геометрии молекул, - говорить нельзя, а кластер следует рассматривать как жидкое или аморфное образование. Экспериментальные данные об изомерии реальных кластеров в свободном состоянии пока, по-видимому, еще отсутствуют. Интересно, однако, отметить результаты электронографические исследований свободных кластеров аргона при 25 К: при ~40-50 атомах в кластере он является аморфным, при ^60 атомах - кристаллическим.Таким образом, структура легко перестраивается в соответствии с числом ее частиц; барьеры для переходов одних изомеров в другие, как было указано, тоже невысоки.Замечательно, что заметная подвижность структуры сохраняется и в стабилизированных кластерах. Установлено, например, что молекулы многих кластерных соединений типа карбонитов металлов (в частности, Fe3(CO)la и Ru3(CG)12) «пластичны»: они легко деформируются и не имеют определенной устойчивой структуры, реальной для рентгенографа. Ф. Коттон предложил для таких молекул название «фиктильные» (глиняные). К особенностям подобных «глиняных» молекул мы еще вернемся при обсуждении роли кластеров в химии поверхностей.Говоря о стереохимической нежесткости молекул, как правило, подразумевают подвижность (легкость обмена местами) лигандов, окружающих кластер. Большее впечатление производит подвижность атомов, образующих собственно кластер (тело), в кластерных металлорганических соединениях. Иллюстрации ее немногочисленны; одной из наиболее наглядных является образование RuO(CO)ls и RuOs2 (СО)12 при нагревании смеси Ru, (CO)1shOs3 (СО)12; такие продукты могут образоваться только благодаря подвижности как лигандев, так и металлических атомов. Было бы интересно установить, не происходит ли обмен целых фрагментов Ме(СО)у.7. Фазовые переходы в кластерахФазовые переходы обнаруживаются в вычислениях уже для малых кластеров. Все же для еще меньших размеров понятие агрегатного состояния уже полностью утрачивает смысл, и на этом месте вновь возникает многократно обсуждавшаяся проблема о возможности непрерывного перехода от твердого состояния к жидкому, подобному критическому переходу в системах жидкость - пар. Первоначальная дискуссия между В. Оствальдом и Г. Тамманом (первый утверждал, а второй отрицал упомянутую возможность) оставила вопрос открытым. Много позже к проблеме вернулся Я.И. Френкель, который высказался в пользу существования критических явлений в системах жидкость - кристалл, тогда как Л.Д. Ландау отверг эту концепцию на том основании, что симметрия не может изменяться непрерывно. Казалось бы, вопрос уже решен раз и навсегда. Но теперь рассмотрение свойств кластеров наводит на мысль, что в таких нетривиальных системах с переменным числом атомов ситуация может оказаться и иной. Поэтому-то столь интересны едва начатые исследования равновесий «кристаллических» кластеров с жидкостью илигазом. Весьма существенны для химика электронные свойства кластеров. Они исследованы теоретически для ряда металлических систем; хотя результаты заметно зависят от выбранного метода вычислений, в общих чертах, качественно, они вполне согласуются друг с другом. Именно уже в малых кластерах из пяти-шести атомов происходит значительная делокализация валентных электронов металла и в энергетическом спектре электронного газа выделяются состояния, отвечающие электронным зонам массивного металла. (На примере нанесенных кластеров золота найдено экспериментально, что у переходных металлов с ростом кластера прежде всего формируется d-зона.) Вместе с тем степень делокализации электронов меньше, чем в большом кристалле, и соответственно работа выхода электрона имеет промежуточное значение между работой выхода для массы металла и потенциалом ионизации одиночного атома.Один из очень интересных результатов таких исследований - установление важной роли поверхностных состояний электронов в металлических кластерах; дли этих состояний по сравнению с объемными состояниями характерен некоторый дефицит электронной плотности. Отсюда рост работы выхода электрона из кластера по сравнению с большим металлическим кристаллом; для 13-атомных кубооктаэдрических кластеров переходных металлов разница составляет 2 эВ.Надо думать, вскоре теоретики извлекут из этого результата заключения непосредственно химического характера, в частности, относительно связи каталитической активности и реакционной способности с размером частиц и о морфологией поверхности.Обратим внимание на важное обстоятельство, обычно упускаемое из виду при обсуждении результатов подобных расчетов: они относятся к кластеру с фиксированными положениями ядер. В действительности, как говорилось, эти положения подвержены сильнейшим флюктуациям, что вызывает и флюктуации заселенностей электронных уровней в кластере. Можно предполагать поэтому, что металлический кластер должен быть источником хаотически и быстро изменяющегося электрического поля. Должка колебаться во времени и работа выхода электрона из кластера. Наконец, отмечено, что взаимодействия движения электронов с колебаниями «решетки» кластера ослаблены, это ведет к «разогреву» электронного газа и возможности холодной эмиссии электронов. Возможно, что с этим связано заметное и зависящее от размера влияние подложки на свойства очень малых нанесенных металлических частиц: последние сравнительно легко отдают часть электронов носителю. Бесспорно значение этой возможности для катализа.Таким образом, уже первые сведения об электронных свойствах кластеров представляют несомненный интерес для химика.И структура, и свойства кластеров в конечном счете определяются химическими связями в них. Поэтому уместно несколько замечаний о связях в кластерах. Так, для металлорганических и бороновых кластерных соединений принимается, что в устойчивом g-атомном кластере «скелетных» электронов должно быть 2g±2m, где /я=0, или 1, или 2, а правила выбора т зависят от природы атомов. На возможность достижения этого идеала или хотя бы приближения к нему сильно влияет конкуренция связей металл - металл и металл - лиганд, причем замена акцепторных лигандов донорными, как правило, повышает прочность кластера. Поэтому соединения с акцепторными лигандами способны давать' только достаточно большие металлические кластеры, в которых возникающий дефицит электронов распределяется между многими атомами. Эти общие правила позволяют понять также, почему число лигандов, приходящееся на один атом кластера-, падает с увеличением размера кластера (например, в ряду Со2(СО)8, Со4(СО)12, Со(СО)1в) и почему приобретение или реже утрата одного-двух электронов может вести к упрочнению системы, как, например, в анионах [Re4(CO)ie]2-, lOse(CO),8P- и [Ni, (СО)Х„12- и карбо-нилгидридных катионах [HRu3(CO)12,]+ и [НО83(СО)141. Для подобных металлических кластеров характерна сильная делокализация электронов. Вероятно, в той или иной степени это явление присуще и таким двух- и многокомпонентным кластерам, как полисоединения, содержащие не только атомы металла, но и кислород, хотя здесь число делокализованных электронов, естественно, меньше. В случае кластеров, стабилизированных только зарядом, существуют почти непрерывные переходы от электростатической стабилизации к валентной (квантовомеханической). Это достаточно ясно видно, например, при рассмотрении ряда: сольватированные анионы, сольватированный электрон в жидкой фазе, отрицательно заряженные кластеры в инертных газах и отрицательно заряженные кластеры в парах щелочных металлов: в последнем случав избыточный электрон не локализован, а «смешан» с электронным газом металла. То же самое относится и к положительно заряженным кластерам: на одном конце ряда находятся ионные кластеры с катионом в центре, на другом - металлические положительно заряженные кластеры типа, например.Наиболее просты и доступны для обобщения соотношения, которые характеризуют однокомпонентные нестабилизированные кластеры. Здесь взаимодействие частиц удается описывать с помощью того или иного потенциала (или в последнее время квантовомеханические). На одном краю поля помещаются «кулоновские» кластеры с полностью локализованными электронами, на другом - металлические кластеры с почти полностью делокализированными. К «чистым» случаям надо отнести еще «вандер-ваальсовские» кластеры (из атомов инертных газов), удерживающиеся дисперсионными силами.Переходя от кластеров атомов к кластерам молекул, мы должны будем добавить к этим предельным случаям множество смешанных, и прежде всего очень важный тип «кластеров на водородных связях» (конечно, в первую очередь кластеры воды).8. Кластеры в химических превращенияхРаспространенность кластерных форм и состояний в различных химических системах порождает догадку, что роль кластеров в химических превращениях важнее, чем это представляется по существующим изложениям кинетики и механизма реакций в руководствах и монографиях. Укажем некоторые общие положения, которые надо иметь в виду при исследованиях химического поведения кластеров. Частицы, входящие в состав кластера, отчасти сохраняют свою химическую индивидуальность, но кластер может выступать и в качестве самостоятельной химической единицы. Иначе говоря, переходная природа кластеров придает им двойственную или даже множественную способность часто в одних и тех же условиях. (В каталитических реакциях на кластерах, по-видимому, могут проявляться и реакционная способность кластера как целого, и реакционная способность его отдельных элементов: в одних стадиях одно, в других - другое).Список используемой литературы1. «Кластеры в физике, химии, биологии» Лахно В.Д., 2001 г.2. «Кластеры: получение и реакционная способность» Смирнов В.В., Тюрина Л.А., 2002 г.3. «Кукурбитурил: играем в малекулы» В.П. Федин, О.А. Герасько, 2000 г. 4. «Нанотехнологня: физикохимия нанокластеров» Суздалев Игорь Петрович, 2006 г.
|
|