БОЛЬШАЯ НАУЧНАЯ БИБЛИОТЕКА  
рефераты
Добро пожаловать на сайт Большой Научной Библиотеки! рефераты
рефераты
Меню
Главная
Банковское дело
Биржевое дело
Ветеринария
Военная кафедра
Геология
Государственно-правовые
Деньги и кредит
Естествознание
Исторические личности
Маркетинг реклама и торговля
Международные отношения
Международные экономические
Муниципальное право
Нотариат
Педагогика
Политология
Предпринимательство
Психология
Радиоэлектроника
Реклама
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Физика
Философия
Финансы
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Сельское хозяйство
Социальная работа
Сочинения по литературе и русскому языку
Товароведение
Транспорт
Химия
Экология и охрана природы
Экономика и экономическая теория

О растворимости полиарилатов на основе фенолфталеина и дикарбоновых кислот

О растворимости полиарилатов на основе фенолфталеина и дикарбоновых кислот

О РАСТВОРИМОСТИ ПОЛИАРИЛАТОВ НА ОСНОВЕ ФЕНОЛФТАЛЕИНА И ДИКАРБОНОВЫХ КИСЛОТ

Процесс растворения сопровождается разрушением структуры полимера, растворителя и возникновением новой структуры раствора [1]. В последнее время этому вопросу уделяется большое внимание. Структуру концентрированных растворов полимеров изучали в работах [2--4]. В данной работе при исследовании свойств разбавленных растворов полиарилатов рассматривали два фактора: конформации макромолекул в растворе и ориентациоиный порядок сольватирующих их молекул растворителя, о котором судили по термодинамическим параметрам раствора.

На конформацию макромолекул в растворе большое влияние оказывает равновесная жесткость цепи полимера. В данном исследовании попытались проследить, каким образом изменение строения только кислотной компоненты элементарного звена макромолекулы полиарилата скажется на равновесной жесткости его цепи, а следовательно, и на конформации макромолекулы в растворе и на структуре самого раствора. Исследовали полиарилаты следующего строения:

Полиарилаты синтезировали методом высокотемпературной поликонденсации е-среде высококипящего растворителя (а-хлорнафталина) при 220° и продолжительности синтеза 12 ч по методике работы [5]. Фракционирование полимеров на 12-15 фракций проводили методом распределения между двумя несмешивающимися жидкостями, в качестве растворителя использовали смесь тетрахлорэтан (ТХЭ) : фенол в соотношении 3 :1 по весу, осадитель -- и-гептан.

ММ фракций и вторые вириальные коэффициенты А2 растворов измеряли методом светорассеяния на фотогониодиффузометре «Fica». Растворы очищали фильтрованием через систему фильтров 3 и 4. Перед измерением интенснвностей светорассеяния кюветы с растворами термостатировали в течение 1 ч в термостате при температуре измерения. Точность термостатирования ±0,1°. Инкремент показателя преломления растворов определяли на рефрактометре типа «Пульфриха», снабженном дифференциальной кюветой.

Растворители очищали по известным методикам [6], чистоту растворителей контролировали по показателю преломления.

Ранее нами было найдено [7], что для полимера I 6-растворителем служит ТГФ (9=22°). Предварительные опыты по температурному осаждению полимеров из раствора показали, что ТГФ можно использовать в качестве О-растворнтеля и для полимера II. Оказалось, что при повышении температуры >20° растворы становились мутными, поэтому 9-температуру искали в температурном диапазоне <20°. Полимер III в ТГФ не растворился. При комнатной температуре этот полимер хорошо растворился в ДХ, а при повышении температуры >45° полимер выпадал в осадок, что свидетельствовало о наличии НКТС. 0-температуры для всех полимеров находили экстраполяцией температурных зависимостей Л2 к 0, используя растворы нефракционированных образцов и фракций.

Температурные зависимости удельных парциальных объемов полимеров в 6-рас-творителях определяли по методике работы [8].

Характеристические вязкости растворов исходных полимеров и их фракций определяли при помощи капиллярного вискозиметра с «висячим» уровнем в ТХЭ при 25±0,1° и в 8-условиях.

Характеристики исследованных образцов и результаты определения 9-условий даны в табл. 1.

Анализ данных по изменению А2 с температурой (рис. 1) свидетельствует о том, что для всех исследованных полимеров характерно ухудшение растворимости с повышением температуры, что подтверждает наличие НКТС. Как известно, НКТС наблюдается в системах с сильными меж-молекулярными взаимодействиями, которые могут быть обусловлены различными причинами, в частности возникновением в растворах донорно-акцепторных связей между макромолекулами полимера и молекулами

Рис. 1. Температурные зависимости Аг для полиарилатов I--III растворителя [1].

При растворении полимеров I и II в ТГФ возможны такого рода взаимодействия между положительно заряженным атомом углерода карбонильной группы и неподеленными электронными парами атома кислорода в ТГФ. Растворение полиарилата III в ДХ может быть обусловлено донорно-акцепторными взаимодействиями между л-электронами бензольных колец полимера и свободными Зс орбиталями атома хлора растворителя. Полимеры I и II в ДХ также растворимы, однако с повышением температуры их растворимость улучшалась, о чем свидетельствовали данные по температурным зависимостям А2: для полимера I значения А2 изменялись от --2-Ю-4 см3моль/г2 до 1-10-4 см3-моль/г2 в температурном диапазоне 20--35°, для полимера II от --10-10~4 см3-*моль/г2 до 2-10-4 см3-моль/г2 в интервале температур 25--55°.

Таким образом, полученные результаты показали, что изменение строения элементарного звена полимера влияет на процесс растворения, а следовательно, должно отразиться и на термодинамических параметрах растворов. Воспользовавшись температурной зависимостью второго ви-риального коэффициента А2, оценили энтропийный и энтальпийный вклады в энергию взаимодействия полимер -- растворитель. Согласно Флори [9], при температурах, близких к 6, справедлива следующая зависимость:

где и ki соответствуют энтропийному и энтальпийному вкладу в энергию взаимодействия полимер -- растворитель; v2 -- удельный парциальный объем полимера в растворе; vi -- мольный объем растворителя.

На рис. 2 представлены температурные зависимости параметров гр±, А-ч и разности г|)1--к,. Полученные данные показали, что процесс растворения всех трех полимеров протекает экзотермически (Ач<0) и сопровождается возникновением ориентации молекул растворителя около молекул полимера (i|)i<0). Нужно учесть, что донорно-акцепторные связи указанного выше типа не относятся к числу слабых. В области, близкой к 6-темпера-туре, наблюдается разброс экспериментальных значений и kt как для нефракционированных образцов I и II (рис. 2), так и для фракций. Для всех трех систем характерно уменьшение разности к С) с ростом температуры, что отражает ухудшение термодинамического качества растворителя при нагревании. На рис. 2, а, б обращает на себя внимание следующий факт: в области температур ниже 8 значения ifi и ki для всех систем остаются практически постоянными, причем для полимера III это постоянство сохраняется во всей исследованной температурной области.

Малые по величине значения параметров if>i и ki для полимера III, по-видимому, связаны с тем, что ДХ образует слабые комплексы с полимером, поскольку его донорное число DNsbcu равно 0,1, в отличие от ТГФ,

Рис. 3. Температурные зависимости Ъ2 полиарилатов I --III в растворах ТГФ (I, II) и ДХ ЦШ)

у которого ZWSbci5=20 [10]. Это подтверждается данными по температурному изменению удельных парциальных объемов полимеров в растворах (рис. 3). Значения v2 для систем в ТГФ при температурах ниже 9 близки н остаются практически постоянными, в области 8-температуры происходит заметное уменьшение значений v2. Для полимера III в ДХ значения v2 значительно выше, и заметных изменений во всем температурном диапазоне точно так же, как для энтропийного и энтальпийного параметров, не наблюдается. Таким образом, результаты измерения температурной зависимости v2 показали, что в растворителе, который образует слабые донорно-акцепторные связи с полимером, макромолекулярный клубок имеет более рыхлую упаковку.

Следующей задачей нашего исследования было выяснение влияния изменения строения элементарного звена полимера на конформации макромолекул в растворе. Вначале методом машинного эксперимента на ЭВМ проведено моделирование макромолекулярного клубка методом Монте-Карло по программе, описанной в работе [11]. Структурные единицы полиарилатов моделированы на основании литературных данных о строении простейших молекул, близких по составу и строению к мономерным звеньям [12]. В табл. 2 приведены длины виртуальных связей углы между ними и указана возможность свободного вращения вокруг виртуальных связей, 8-угол дополнительный к углу между виртуальными связями. Вращение вокруг связи С--О запрещено, потому что эта связь считается полу торной, так как ее длина меньше суммы ковалентных радиусов углерода и кислорода.

Полученные в результате машинного эксперимента конформационные параметры приведены в табл. 3.

Анализ этих данных позволяет сделать следующие выводы относительно влияния химического строения звена на конформационные параметры при свободном вращении: увеличение угла между виртуальными связями, а также возрастание длины виртуальной связи приводит к увеличению равновесной жесткости цепи, напротив замена одной виртуальной связи h на две (в полимере III) уменьшает жесткость.

Ранее нами было показано [7], что моделью для описания поведения макромолекул полимера I в ТГФ может служить гауссов клубок, образованный цепями конечной длины, и найдено экспериментальное значение сегмента Куна, равное 30 А. При выборе модели для описания поведения макромолекул полимера II в ТГФ мы руководствовались теми же соображениями, что и в работе [7], поскольку так же, как и в работе [7]. параметр а в уравнении Марка -- Куна -- Хаувинка в 8-условпях не равнялся 0,5 (а=0,61) и заметно влияние растворителя па гидродинамические параметры (например, на [л]). Мы также воспользовались моделью клубка, образованного цепями конечной длины. Была построена зависимость М/[п] от vМ и проведен расчет по уравнению [13]

Так как для полиарилата III в Э-условиях значение а=0,5, в данном случае нами была использована модель гауссова непроницаемого клубка и значения А рассчитаны по уравнению [13]

Результаты, приведенные в табл. 3, полностью подтвердили выводы, сделанные на основе данных машинного эксперимента. А именно введение в кислотную компоненту элементарного звена макромолекулы дополнительной фенильной группы привело к некоторому увеличению значения сегмента Куна с 30 А для полимера I до 40 А для полимера II, что свидетельствует о нарастании равновесной жесткости цепи. Введение дополнительной фталидной группировки (полимер III) понизило жесткость цепи и уменьшило значение сегмента Куна до 23 А. Кроме того, степени заторможенности о=УЛэД4т этих полимеров близки по значению и невелики, т. е. в растворе осуществляется большой набор возможных конформаций.

Таким образом, изменение строения кислотной компоненты элементарного звена в незначительной степени сказалось на равновесной жесткости макромолекулярной цепи; более заметно влияние этого фактора на термодинамический процесс растворения, и, следовательно, на структуру самого раствора.

ЛИТЕРАТУРА

Тагер А.А. // Высокомолек. соед. А. 1984. Т. 26. № 4. С. 659.

Goell К.В., Berry G.С. // J. Polymer Sci. Phys. Ed. 1977. V. 15. № 3. P. 555.

Тагер А.А., Древалъ В.E.. Курбаналиев M., Луцкий М. С. Берковец Н. Б., Грановская И.М., Чарикова Т.А. // Высокомолек. соед. А. 1968. Т. 10. № 9. С. 2041.

Курбаналиев М., Тагер А.А., Древалъ В.Е. // Механика полимеров. 1968. № 2. С. 35.

Коршак В.В., Виноградова С.В., Салазкин С.Н. // Высокомолек. соед. 1962. Т. 4. № 3. С. 339.

Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э. Органические растворители. М., 1958.

Коршак В.В., Павлова С.-С.А.. Дубровина Л.В., Кобак Н.Ю., Гладкова Е.А.Ц Высокомолек. соед. А. 1980. Т. 12. № 7. С. 1458.

Сердюк И. Н., Эскин В. Е. // Вестн. ЛГУ. 1970. Вып. 2. № 10. С. 57.

Flory P. Principles of Polymer Chemistry. N. Y., 1953. P. 532.

Готман В. Химия координационных соединений в неводных средах. М., 1971. С. 165.

Pavlova S.S. A., Timofeeva G.I., Pancratova L.//J. Polvmer Sci. Polymer Phys. Ed. 1980. V. 18. № 1. P. 1.

Флори П. Статистическая механика цепных молекул. М., 1971.

Рафиков С.Р., Будтов В.П., Монаков Ю.Б. Введение в физикохимию растворов полимеров. М., 1978.





17.06.2012
Большое обновление Большой Научной Библиотеки  рефераты
12.06.2012
Конкурс в самом разгаре не пропустите Новости  рефераты
08.06.2012
Мы проводим опрос, а также небольшой конкурс  рефераты
05.06.2012
Сена дизайна и структуры сайта научной библиотеки  рефераты
04.06.2012
Переезд на новый хостинг  рефераты
30.05.2012
Работа над улучшением структуры сайта научной библиотеки  рефераты
27.05.2012
Работа над новым дизайном сайта библиотеки  рефераты

рефераты
©2011