|
Получение азотной кислоты
Получение азотной кислоты
15 МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ТОНКОЙ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ им. М.В. ЛОМОНОСОВА КАФЕДРА ОХТ КУРСОВОЙ ПРОЕКТ ПОЛУЧЕНИЕ АЗОТНОЙ КИСЛОТЫ СтудентСпектор В.Ф. ГруппаХТ-409 ПреподавательСмирнова С.Н. Москва 2000 ВведениеАзотная кислота - одна из важнейших минеральных кислот. По объему производства в химической промышленности она занимает второе место после серной кислоты. Азотная кислота широко применяется для производства многих продуктов, используемых в промышленности и сельском хозяйстве: около 40% ее расходуется на получение сложных и азотных минеральных удобрений; азотная кислота используется для производства синтетических красителей, взрывчатых веществ, нитролаков, пластических масс, лекарственных синтетических веществ и др.; железо хорошо растворяется в разбавленной азотной кислоте. Концентрационная азотная кислота образует на поверхности железа тонкий, но плотный слой нерастворимого в концентрированной кислоте оксида, защищающего металл от дальнейшего разъедания. Эта способность железа пассивироваться используется для защиты его от коррозии. Концентрированную азотную кислоту (особенно с добавлением 10% H2SO4) перевозят обычно в стальных цистернах. Многие органические вещества (в частности животные и растительные ткани) при действии HNO3 разрушаются, а некоторые из них от соприкосновения с очень концентрированной кислотой могут воспламеняться. В лабораторной практике обычно применяется азотная кислота, содержащая около 65% HNO3 (пл.1,40). В промышленности применяют два сорта азотной кислоты: разбавленную с содержанием 50-60% HNO3 и концентрированную, содержащую 96-98% HNO3. Раньше, когда не существовало производства синтетического аммиака, азотную кислоту получали действием серной кислоты на чилийскую селитру. Объемы производств были очень небольшими, и кислота использовалась только для производства взрывчатых веществ, красителей и некоторых других химических продуктов. Сейчас азотную кислоту получают из синтетического аммиака и перерабатывают главным образом в азотные удобрения. Характеристика исходного сырьяСырьем для получения азотной кислоты служат аммиак, воздух и вода. Синтетический аммиак в большей или меньшей степени загрязнен примесями. Такими примесями являются катализаторная пыль, смазочное масло (при сжатии поршневым компрессором). Для получения чистого газообразного аммиака служат испарительные станции и дистилляционные отделения жидкого аммиака. Дальнейшая очистка осуществляется в фильтрах, состоящих из чечевицеобразных элементов, фильтрующим материалом в которых служит хлопчатобумажная замша. Тонкой очистке аммиачно-воздушная смесь подвергается в фильтре с поролитовыми трубками. Атмосферный воздух, применяемый в производстве азотной кислоты, забирается на территории завода или вблизи его. Этот воздух загрязнен газообразными примесями и пылью. Поэтому он подвергается тщательной очистке во избежание отравления катализатора окисления аммиака. Очистка воздуха осуществляется, как правило, в скруббере, орошаемом водой, затем в двухступенчатом фильтре. Вода, применяемая для технологических нужд, подвергается специальной подготовке: отстою от механических примесей, фильтрованию и химической очистке от растворенных в ней солей. Для получения реактивной азотной кислоты требуется чистый паровой конденсат, который дополнительно очищают от возможных примесей. [А.М. Кутепов, стр.397] Характеристика целевого продуктаБезводная азотная кислота HNO3 представляет тяжелую бесцветную жидкость, пл.1,52 (при 15 єС), дымящую на воздухе. Она замерзает при -41 и кипит при 86 єС. Кипение кислоты сопровождается частичным разложением: 4HNO3 2H2 + 4NO2 + O2 - 259,7 кДжВыделяющийся диоксид азота, растворяясь в кислоте, окрашивает ее в желтый или красный (в зависимости от количества NO2) цвет. С водой азотная кислота смешивается в любых соотношениях. Выделение теплоты при разбавлении азотной кислоты водой свидетельствует об образовании гидратов (HNO3H2O, HNO32H2O). Азотная кислота - сильный окислитель. Металлы, за исключением Pt, Rh, Ir, Au, переводятся концентрированной азотной кислотой в соответствующие оксиды. Если последние растворимы в азотной кислоте, то образуются нитраты. [Мухленов, стр.99] Физико-химическое обоснование основных процессов производства целевого продуктаХимическая концепция методаПроцесс производства разбавленной азотной кислоты складывается из трех стадий: конверсия аммиака с целью получения оксида азота4NH3 + 5O2 = 4NO + 6H2O(4.1) окисление оксида азота до диоксида2NO + O2 2NO(4.2) абсорбция оксидов азота водой4NO2 + O2 + 2H2O = 4HNO3(4.3) Физико-химические основы процесса конверсии аммиакаОкисление аммиака кислородом воздухом без катализатора возможно только до N2. На катализаторе между аммиаком и кислородом протекают следующие реакции: 4NH3 + 5O2 = 4NO + 6H2O; ?H = - 946кДж(4.1) 4NH3 + 3O2 = 2N2 + 6H2O?H = - 1328кДж(4.4) Реакции окисления аммиака сопровождаются значительной убылью свободной энергии, протекают с большой скоростью, практически необратимо. Теплоты, выделяющейся во время реакции, вполне достаточно, чтобы процесс шел автотермично. Каталитическое окисление аммиака - многостадийный гетерогенно-каталитический процесс, протекающий во внешнедиффузионной области и лимитируемый диффузией аммиака к поверхности катализатора. Катализаторы, применяемые для окисления аммиака, должны обладать избирательными свойствами, т.е. ускорять только одну реакцию. Наиболее активным и селективным катализатором является платина. Она также имеет низкую температуру зажигания 200 єС, хорошую пластичность, тягучесть. Но ее недостаток - это быстрое разрушение при высоких температурах при воздействии больших скоростных потоков реагентов и катализаторных ядов. Это приводит к потерям дорогостоящего катализатора и выхода оксида азота, что явилось причиной использования сплавов платины с другими металлами. Наибольшее распространение получили следующие катализаторы (ГОСТ 3193-59): Pt + 4% Pd + 3,5% Rh - для работы при атмосферном давлении и Pt + 7,5% Rh - при повышенном давлении. Катализаторы изготавливают в виде сеток. Такая форма удобна в эксплуатации и связана с минимальными затратами металла. Катализаторы весьма чувствительны к ряду примесей, содержащихся в аммиаке и воздухе, особенно к соединениям фтора и серы. Примеси заметно снижают селективность катализатора. Для поддержания стабильной степени конверсии необходима тщательная очистка АВС АВС - аммиачно-воздушная смесь. и от механических примесей, особенно от оксидов железа и пыли железного катализатора синтеза аммиака. Срок службы до 14 месяцев при атмосферном давлении и до 9 при повышенном. Температура оказывает наибольшее влияние на выход оксида азота (II). При повышении температуры выход NO растет, причем существует оптимальная температура (для чистой платины 900 - 920 єС), при которой достигается максимальный выход. Большое значение имеет температура зажигания катализатора, которая зависит в основном от его состава. На платине реакция начинается при 195 єС. Выход достигает значения 96% на чистой платине и 99% на сплавах. Проведение процесса при высоких температурах помимо увеличения выхода монооксида азота имеет и другие преимущества: растет скорость реакции окисления аммиака и уменьшается время контактирования. Но при повышении температуры увеличиваются потери дорогостоящей платины, т.е. ухудшаются экономические показатели процесса. С ростом давления наблюдается снижение выхода оксида азота (II). Вместе с тем использование высокого давления позволяет повысить производительность агрегата, уменьшить размеры аппаратов. Процесс осуществляется под давлением 0,41 - 0,73 МПа. Основным условием получения высоких выходов NO под давлением являются повышение температуры и времени контактирования (увеличение числа сеток). При стехиометрическом соотношении кислорода и аммиака O2: NH3 = 1,25 даже при атмосферном давлении выход оксида азота не превышает 60 - 80%. Кроме того, пришлось бы работать в области взрывоопасных концентраций. При увеличении соотношения O2: N до 1,7 что соответствует содержанию аммиака в смеси 11,5%, выход NO возрастает.д.ля получения высокого выхода NO необходим 30% -ный избыток кислорода сверх стехиометрического. Это связано с тем, что поверхность платинового катализатора должна постоянно быть покрыта кислородом, иначе уже при 500 єС аммиак начинает разлагаться на азот и кислород. Окисление оксида азота (II) Реакция окисления2NO + O2 2NO2; ?H = - 124 кДж(4.2) обратима, протекает с уменьшением объема и сопровождается выделением тепла. Следовательно, снижение температуры и повышение давления способствует образованию NO2. При температурах до 100 єС равновесие реакции практически полностью сдвинуто в правую сторону. Окисление диоксида азота - самая медленная стадия получения азотной кислоты. Она сильно зависит от концентрации реагентов, давления температуры. Применение воздуха, обогащенного кислородом (или чистого кислорода) позволяет получать НГ НГ - нитрозные газы. с повышенным содержанием оксида азота (II) и увеличить скорость окисления NO в NO2. Реакция окисления NO в NO2 ускоряется при понижении температуры, а с повышением замедляется почти до полного прекращения. Это объясняется тем, окисление NO в NO2 идет через образование промежуточного продукта - димера оксида азота (II): 2NO (NO) 2; ??????(4.5) ?2 + (NO) 2 2NO2; ?? ? ?(4.6) Таким образом, уменьшение скорости окисления оксида азота в диоксид с повышением температуры можно объяснить сильным снижением концентрации димера. Обычно переработку нитрозных газов ведут при температурах 10 - 50 єС, при которых часть диоксида полимеризуются в N2?4. Итак, нитрозные газы, поступающие на абсорбцию, содержат NO2, N2O4, NO, N2O, N2, N2O3. Абсорбция диоксида азотаВсе оксиды азота, за исключением NO, реагируют с водой с образованием азотной кислоты. Азотистая кислота является малоустойчивым соединением и распадается на азотную кислоту, оксид азота (II) и воду. Абсорбция протекает по схеме: 2NO2 + H2O HNO3 + HNO2; ????????? кДж(4.7) 3HNO2 HNO3 + 2NO + H2O; ??????? кДж(4.8) Суммарно взаимодействие NO2 с водой можно представить уравнением реакции: 3NO2 + H2O 2HNO3 + NO; ????????? кДж(4.9) В пограничном слое газ-жидкость происходит переход NO2 в жидкую фазу. Затем после растворения NO2 происходит химическая реакция (3), которая по сравнению с процессом диффузии протекает относительно быстро. Далее в жидкой фазе происходит сравнительно медленное разложение азотистой кислоты по реакции (4). Образующийся NO частично окисляется кислородом в растворе, но большая часть - в газовой фазе. Медленным процессом, определяющим скорость поглощения оксидов азота, является диффузия их в газовую фазу. Степень поглощения диоксида азота водными растворами азотной кислоты определяется такими факторами, как температура, давления, концентрация кислоты. При понижении температуры и концентрации кислоты и повышении давления степень превращения диоксида азота растет. При концентрации азотной кислоты выше 65% поглощение почти прекращается. Также степень превращения NO в NO2 зависит от свободного объема, а количество поглощаемых оксидов азота - от поверхности соприкосновения газа с жидкостью. Поэтому одно из основных требований, предъявляемое к абсорбционной аппаратуре, - создание максимального свободного объема при одновременно сильно развитой поверхности поглощения. Обоснование предлагаемой технологииСырьем служит недорогой и легко доступный синтетический аммиак, который при оптимально подобранных параметрах практически весь идет на получение монооксида азота; реакция протекает необратимо и быстро и не требует рециклов. Применение повышенного давления способствует уменьшению размеров аппаратов и увеличению производительности, но при этом увеличивается температура и количество сеток катализатора. Для обеспечения выхода оксида азота более 98% при давлениях 0,41 - 0,71 МПа необходима температура выше 950 єС, зато время контактирования становится менее 1,110-4 с, а скорость газа более 160 л/мин. Вообще, повышение температуры способствует увеличению выхода, но это приводит к большим прямым потерям дорогостоящего катализатора. Поскольку окисление оксида азота (II) протекает при низких температурах смесь охлаждается водой, которая, превращаясь в пар, идет на технологические нужды, а это экономически выгодно. Абсорбция диоксида азота происходит в колонне очищенной водой, причем степень абсорбции достигает 99%, а содержание оксидов азота в выхлопных газах до 0,11%. Обоснование выбора технологических параметровАВС, подаваемая в контактный аппарат, не должна содержать более 10%, иначе катализатор не будет полностью покрыт кислородом и начнется окисление аммиака до азота. Хотя максимально возможной концентрацией аммиака, при которой достигается высокий выход, является 11,0 - 11,5%, используется более низкая, поскольку скорость газа велика и необходим запас на случай проскока. Конверсия протекает при температурах 870 - 900 єС и давление 0,716 МПа. Эти параметры были подобраны на основе экономических показателей, т. к. повышение температуры увеличивает как выход, так и прямые потери платинового катализатора. Реакцию окисления NO в NO2 начинают проводить при температуре 170 єС, достаточной для обеспечения хорошего выхода и скорости. За счет теплоты реакции происходит разогрев до 300 єС. Степень окисления составляет около 85%. Абсорбцию диоксида азота ведут при температуре 35 - 40 єС, поскольку это способствует смещению равновесия вправо, концентрация кислоты на выходе достигает 55-58%. Функциональная схема получения азотной кислоты.Описание технологической схемы процессаВ 1960-ых годах разработан агрегат по производству азотной кислоты мощностью 120 тыс. т/год под давлением 0,716 МПа с использованием высокотемпературной каталитической очистки выхлопных газов, выпускающий продукцию в виде 53-58% -ной HNO3. Технологическая схема этого производства в упрощенном варианте представлена на рисунке 2. Атмосферный воздух проходит тщательную очистку в двухступенчатом фильтре 1. Очищенный воздух сжимают двухступенчатым воздушным компрессором. В первой ступени 18 воздух сжимают до 0,35 МПа, при этом он нагревается до 165-175 єС за счет адиабатического сжатия. После охлаждения воздух направляют на вторую ступень сжатия 16, где его давление возрастает до 0,716 МПа. Основной поток воздуха после сжатия нагревают в подогревателе воздуха 12 до 250-270 єС теплотой нитрозных газов и подают на смешение с аммиаком в смеситель 6. Газообразный аммиак, полученный путем испарения жидкого аммиака, после очистки от влаги, масла и катализаторной пыли через подогреватель 5 при температуре 150 єС также направляют в смеситель 6. Смеситель совмещен в одном аппарате с поролитовым фильтром. После очистки АВС с содержанием NH3 не более 10% подают в контактный аппарат 14 на конверсию аммиака. Конверсия аммиака протекает на платинородиевых сетках при температуре 870_900 єС, причем степень конверсии составляет 96%. Нитрозные газы при 890-910 єС поступают в котел-утилизатор 15, расположенный под контактным аппаратом. В котле за счет охлаждения нитрозных газов до 170 єС происходит испарение химически очищенной деаэрированной воды, питающей котел-утилизатор; при этом получают пар с давлением 1,5 МПа и температурой 230 єС, который выдается потребителю. После котла-утилизатора нитрозные газы поступают в окислитель нитрозных газов 13. Он представляет собой полый аппарат, в верхней части которого установлен фильтр из стекловолокна для улавливания платинового катализатора. Частично окисление нитрозных газов происходит уже в котле-утилизаторе (до 40%). В окислителе 13 степень окисления возрастает до 85%. За счет реакции окисления нитрозные газы нагреваются до 300-335 єС. Эта теплота используется в подогревателе воздуха 12.Охлажденные в теплообменнике 12 нитрозные газы поступают для дальнейшего охлаждения в теплообменник 11, где происходит снижение их температуры до 150 єС и нагрев выхлопных (хвостовых) газов до 110-125 єС. Затем нитрозные газы направляют в холодильник-конденсатор 7, охлаждаемый оборотной водой. При этом конденсируются водяные пары и образуется слабая азотная кислота. Нитрозные газы отделяют от сконденсировавшейся азотной кислоты в сепараторе 8, из которого азотную кислоту направляют в адсорбционную колонну 9 на 6-7-ю тарелку, а нитрозные газы - под нижнюю тарелку абсорбционной колонны. Сверху в колонну подают охлажденный паровой конденсат. Образующаяся в верхней части колонны азотная кислота низкой концентрации перетекает на нижележащие тарелки. За счет поглощения оксидов азота концентрация кислоты постепенно увеличивается и на выходе достигает ~1%. Поэтому кислота направляется в продувочную колонну 10, где подогретым воздухом из нее отдувают оксиды азота, и отбеленная азотная кислота поступает на склад. Воздух после продувочной колонны подается в нижнюю часть абсорбционной колонны 9. Степень абсорбции оксидов азота достигает 99%. Выходящие из колонны хвостовые газы с содержанием оксидов азота до 0,11% при температуре 35 єС проходят подогреватель 11, где нагреваются до 110-145 єС и поступают в топочное устройство (камера сжигания 3 установки каталитической очистки. Здесь газы нагреваются до температуры 390-450 єС за счет горения природного газа, подогретого предварительно в подогревателе 4, и направляются в реактор с двухслойным катализатором 2, где первым слоем служит оксид алюминия с нанесенным на него палладием, вторым слоем - оксид алюминия. Очистку осуществляют при 760 єС. Очищенные газы поступают в газовую турбину 17 при температуре 690-700 єС; энергия, вырабатываемая турбиной за счет теплоты хвостовых газов, используется для привода турбокомпрессора 18. Затем газы направляют в котел-утилизатор и экономайзер (на схеме не показаны) и выбрасывают в атмосферу. Содержание оксидов азота в очищенных выхлопных газах составляет 0,005-0,008%, содержание CO2 - 0,23%. Таким образом, данный агрегат полностью автономен по энергии. Энергия рекуперируется в результате установки на одной оси с турбокомпрессором газовой турбины. [Кутепов, стр.410-411]. Структурная и операторная схемы (Кутепов, стр.334) Расчет материального баланса ХТССтруктурная блок-схема ХТСУсловно постоянная информация для расчета|
№ | Содержание информации | Условное обозначение | Единица измерения | Принятое значение | | 1 | Содержание NH3 в АВС | | % об. | 10,5 | | 2 | Степень превращения NH3 в NO | ?1 | % | 94 | | 3 | Степень переработки НГ в HNO3 | ?2 | % | 98,8 | | 4 | Концентрация HNO3 | | % масс. | 57 | | 5 | Содержание O2 в выхлопных газах | | % об. | 3,3 | | 6 | Содержание H2O в выхлопных газах | | % об. | 2,8 | | 7 | Базис расчета, кг HNO3 в продукте | П | кг | 5500 | | |
G - масса потока; V - объём потока; N - количество молей потока; ? - доля компонентов в потоке: нижний индекс номер потока; верхний - компонент. Составы потоков |
№ потока | Индекс потока | Ед. измер. | Содержание компонентов | | | | | NH3 | O2 | N2 | NO | H2O | HNO3 | | 1 | 010 | кмоль | 100% | | | | | | | 2 | 011 | кмоль | | 21% | 79% | | | | | 3 | 12 | кмоль | 10,5% | 18,8% | 70,7% | | | | | 4 | 23 | кмоль | | кмоль | кмоль | кмоль | кмоль | | | 5 | 030 | кмоль | | | | | кмоль | | | 6 | 031 | кмоль | | кмоль | кмоль | | | | | 7 | 301 | кг | | | | | 43% | 57% | | 8 | 302 | кмоль | | 3,3% | кмоль | кмоль | 2,8% | | | |
Балансовая математическая модель Составление системы уравнений 4NH3 + 5O2 = 4NO + 6H2O + Q1 2NO + O2 2NO2 + Q2 2NO + 1,5O2 + H2O = 2HNO3 + Q3 Уравнения для блока контактирования: По оксиду азота: По азоту: По кислороду: По воде: Уравнения для блока абсорбции: По оксиду азота: По воде: По кислороду: Уравнение для потока выхлопных газов: Подготовка системы для решения на ЭВМ Соответствие переменных потокам |
Наименование потока | Условное обозначение | xi | Размерность | Значение по расчету | | АВС | N12 | x1 | кмоль | | | Оксид азота в потоке 23 | | x2 | кмоль | | | Азот в потоке 23 | | x3 | кмоль | | | Кислород в потоке 23 | | x4 | кмоль | | | Вода в потоке 23 | | x5 | кмоль | | | Вода в блок 3 | N030 | х6 | кмоль | | | Выхлопные газы | N302 | х7 | кмоль | | | Воздух в блок 3 | N031 | х8 | кмоль | | | |
Матрица коэффициентов |
№ ур-я | bi при xi | Свободный член | | | х1 | х2 | х3 | х4 | х5 | х6 | х7 | х8 | | | 1 | 0,079 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 0,707 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | 0,188 | -1,25 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | | 4 | -0,15 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 40,286 | | 6 | 0 | 0 | 0 | 0 | 1 | 1 | -0,027 | 0 | 120,416 | | 7 | 0 | 0 | 0 | 1 | 0 | 0 | -0,032 | 0,21 | 29,762 | | 8 | 0 | -0,015 | -1 | 0 | 0 | 0 | 0,941 | 0,79 | 0 | | |
Материальный балнс ХТС Материальный баланс химико-технологической системы производства азотной кислоты на 5500 кг |
Введено | Получено | | Статья прихода | Масса, кг | % | Статья расхода | Масса, кг | % | | | | | | | | | Аммиак | | | 57% -я азотная к-та: | | | | Воздух: | | | Азотная кислота | | | | Кислород | | | Вода | | | | Азот | | | Выхлопные газы: | | | | Вода | | | Оксид азота | | | | | | | Азот | | | | | | | Кислород | | | | | | | Вода | | | | Всего: | | 100 | Всего: | | 100 | | | Список используемой литературыКононова Г.Н. и др. Сборник заданий по расчетам курсовых работ и домашних заданий для студентов направления "Химическая технология и биотехнология" / М.: МИТХТ. 1995 г., 50 с. Кононова Г.Н. и др. Методические указания для выполнения курсовой работы по дисциплине "Основы химической технологии" / М.: МИТХТ. 1995 г.,20 с. Кутепов А.М. и др. Общая химическая технология: Учеб. для техн. вузов / М.: Высш. шк., 1990 - 520 с. Мухленов И.П. и др. Общая химическая технология: Учеб. для химико-техн. спец. вузов. В 2-х т. Т.2. Важнейшие химические производства / М.: Высш. шк., 1984 - 263 с. Кононова Г.Н. и др. Общая химическая технология: Лабораторный практикум. / М.: МИТХТ, 1991.
|
|