Предельные углеводороды (алканы)
Предельные углеводороды (алканы)
13 «Уфимский Государственный Нефтяной Технический Университет» Кафедра: «Физическая и органическая химия» Реферат Предельные углеводороды (алканы) Ст.гр.БТП-09-01 Антипин А. Доцент Калашников С.М. Уфа 2010 Алкамны (также насыщенные углеводороды, парафины, алифатические соединения) -- ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2. Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp3-гибридизации -- все 4 гибридные орбитали атома С равны по форме и энергии, 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. За счёт одинарных связей между атомами С возможно свободное вращение вокруг углеродной связи. Тип углеродной связи -- у-связи, связи малополярны и плохо поляризуемы. Длина углеродной связи -- 0,154 нм. Названия алканов. Слово «алкан» того же происхождения, что и «алкоголь» . Устаревший термин «парафин» произошел от латинских parum - мало, незначительно и affinis - родственный; парафины обладают малой реакционной способностью по отношению к большинству химических реагентов. Многие парафины являются гомологами; в гомологическом ряду алканов каждый последующий член отличается от предыдущего на одну метиленовую группу СН2. Термин происходит от греческого homologos - соответственный, подобный. Номенклатурные (от лат. nomenclatura - роспись имен) названия алканов строятся по определенным правилам, которые не всегда однозначны. Так, если в молекуле алкана ecть различные заместители, то в названии алкана они перечисляются в алфавитном порядке. Однако в разных языках этот порядок может различаться. Например, углеводород СН3-СН(СН3)-СН(С2Н5)-СН2-СН2-СН3 в соответствии с этим правилом по-русски будет называться 2-метил-3-этилгексан, а по-английски 3-ethyl-2-methylhexane… В соответствии с названием углеводорода называются и алкильные радикалы: метил (СН3-), этил (С2Н5-), изопропил (СН3)2СН-, втор-бутил С2Н5-СН(СН3)-, трет-бутил (СН3)3С- и т.д. Алкильные радикалы входят как целое в состав многих органических соединений; в свободном состоянии эти частицы с неспаренным электроном исключительно активны. Некоторые изомеры алканов имеют и тривиальные названия, например, изобутан (2-метилпропан), изооктан (2,2,4-триметилпентан), неопентан (2,3-диметилпропан), сквалан (2,6,10,15,19,23-гексаметилтетракозан), название которого происходит от лат squalus - акула (непредельное производное сквалана - сквален, важное для обмена веществ соединение, было впервые обнаружено в печени акулы). Часто используется и тривиальное название радикала пентила (С5Н11) - амил. Оно происходит от греч. amylon - крахмал: когда-то изоамиловый спирт С5Н11ОН (3-метилбутанол-1) называли «амильным алкоголем брожения», так как он составляет основу сивушного масла, а оно образуется в результате брожения сахаристых веществ - продуктов гидролиза крахмала. Систематическая номенклатура ИЮПАКПо номенклатуре ИЮПАК названия алканов образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающий радикал, затем название радикала и название главной цепи. Если радикалы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых радикалов указывают приставками ди-, три-, тетра-. Если радикалы неодинаковые, то их названия перечисляются в алфавитном порядке. Рациональная номенклатураВыбирается один из атомов углеродной цепи, он считается замещённым метаном и относительно него строится название «алкил1алкил2алкил3а Физические свойства предельных углеводородов (алканов) Алканы - бесцветные вещества, нерастворимые в воде. В обычных условиях они химически инертны, так как все связи в их молекулах образованы с участием sp3-гибридных орбиталей атома углерода и являются очень прочными. В реакции присоединения алканы не вступают: все связи атомов углерода полностью насыщены.· Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи· При нормальных условиях неразветвлённые алканы с CH4 до C4H10 -- газы; с C5H12 до C13H28 -- жидкости; после C14H30 -- твёрдые тела.· Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан -- жидкость, а неопентан -- газ.· газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.Химические свойства предельных углеводородов (алканов)Углеводороды ряда метана при обыкновенной температуре химически весьма инертны, почему они и получили название парафинов (от латинских слов parum affinis -- обладающий малым сродством). С большинством химических реагентов эти углеводороды в указанных условиях или вовсе не реагируют, или реагируют чрезвычайно медленно. При сравнительно невысоких температурах протекает лишь небольшое число реакций, при которых происходит замена атомов водорода на различные атомы и группы (реакции металеп-cuu). Эти реакции ведут к получению производных соответствующих углеводородов. Алканы имеют низкую химическую активность. Это объясняется тем, что единичные C-H и C-C связи относительно прочны и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С -- Н малополярны, оба вида связей малополяризуемы и относятся к у-виду, их разрыв наиболее вероятен по гомолитическому механизму то есть с образованием радикалов. Реакции радикального замещенияГалогенированиеГалогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-светом или нагреть. Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от метилхлорида до тетрахлоруглерода. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного и в два раза меньше чем вторичного. Таким образом хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования. Галогенирование -- это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атому галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно -- за один этап замещается не более одного атома водорода: 1. CH4 + Cl2 > CH3Cl + HCl (хлорметан) 2. CH3Cl + Cl2 > CH2Cl2 + HCl (дихлорметан) 3. CH2Cl2 + Cl2 > CHCl3 + HCl (трихлорметан) 4. CHCl3 + Cl2 > CCl4 + HCl (тетрахлорметан). Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, замещая у них атом водорода, в результате этого образуются метильные радикалы СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы. Бромирование алканов отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах. Иодирование алканов иодом не происходит, получение иодидов прямым иодированием осуществить нельзя. С фтором и хлором реакция может протекать со взрывом, в таких случаях галоген разбавляют азотом или растворителем. Нитрование (реакция Коновалова)Алканы реагируют с 10 % раствором азотной кислоты или оксидом азота N2O4 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных. Реакция также подчиняется правилу Марковникова. RH + HNO3 = RNO2 + H2O Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов. Реакции окисленияГорениеОсновным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример: CH4 + 2O2 > CO2 + 2H2O + Q В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода). В общем виде реакцию горения алканов можно записать следующим образом: СnН2n+2 +(1,5n+0,5)O2= nCO2 + (n+1)H2O Каталитическое окислениеМогут образовываться спирты, альдегиды, карбоновые кислоты. При мягком окислении СН4 (катализатор, кислород, 200 °C) могут образоваться: · метиловый спирт: СН4 + О2 = СН3ОН · формальдегид: СН4 + О2 = СН2О + Н2O · муравьиная кислота: СН4 + О2 = НСООН Термические превращения алкановРазложениеРеакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов. Примеры: CH4 > C + 2H2 (t > 1000 °C) C2H6 > 2C + 3H2 КрекингПри нагревании выше 500 °C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов. В 1930--1950 гг. пиролиз высших алканов использовался в промышленности для получения сложной смеси алканов и алкенов, содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10-15 атомов углерода в углеродном скелете) и фракции солярового масла (12-20 атомов углерода). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания. В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах -- 400--450 °C и низком давлении -- 10-15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой. Для метана: CH4 > С + 2H2 -- при 1000 °C Частичный крекинг: 2CH4 > C2H2 + 3H2 -- при 1500 °C ДегидрированиеОбразование: 1)В углеродном скелете 2 (этан) или 3 (пропан) атома углерода -- получение (терминальных) алкенов, так как других в данном случае не может получиться; выделение водорода: Условия протекания: 400--600 °C, катализаторы -- Pt, Ni, Al2O3, Cr2O3 а)CH3-CH3 > CH2=CH2 + H2 (этан > этен) б)CH3-CH2-CH3 > CH2=CH-CH3 + H2 (пропан > пропен) 2)В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода -- получение алкадиенов; выделение водорода: в)CH3-CH2-CH2-CH3 > CH2=CH-CH=CH2 + H2 (бутан > бутадиен-1,3) в')CH3-CH2-CH2-CH3 > CH2=C=CH-CH3 + H2 (бутан > бутадиен-1,2) 3) В углеродном скелете 6 (гексан) и более атомов углерода -- получение бензола и его производных: г) CH3-CH2-CH2-CH2CH2-CH2-CH2-CH3 (октан) > П.-ксилол, параллельно М.-ксилол, параллельно этилбензол + 3H2 ИзомеризацияПод действием катализатора (например, AlCl3) происходит изомеризация алкана: например, бутан (C4H10), взаимодействуя с хлоридом алюминия (AlCl3), превращается из н-бутана в 2-метилпропан. Конверсия метанаВ присутствии никелевого катализатора протекает реакция: CH4 + H2O > CO + H2 Продукт этой реакции (смесь CO и H2) называется «синтез-газом». ПолучениеГлавным источником алканов (а также других углеводородов) являются нефть и природный газ, которые обычно встречаются совместно. Восстановление галогенпроизводных алкановПри каталитическом гидрировании в присутствии палладия галогеналканы превращаются в алканы: R--CH2Cl + H2 > R--CH3 + HCl Восстановление йодалканов происходит при нагревании последних с йодоводородной кислотой: R--CH2I + HI > R--CH3 + I2 Для восстановления галогеналканов пригодны также амальгама натрия, гидриды металлов, натрий в спирте, цинк в соляной кислоте или цинк в спирте Восстановление спиртовВосстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С. Так, например, проходит реакция восстановления бутанола (C4H9OH), проходящую в присутствии LiAlH4. При этом выделяется вода. H3C--CH2--CH2--CH2OH > H3C--CH2--CH2--CH3 + H2O Восстановление карбонильных соединенийРеакция Кижнера--Вольфа: Реакцию проводят в избытке гидразина в высококипящем растворителе в присутствии KOH. Реакция Клемменсена: Гидрирование непредельных углеводородов· Из алкеновCnH2n + H2 > CnH2n+2· Из алкиновCnH2n-2 + 2H2 > CnH2n+2Катализатором реакции являются соединения никеля, платины или палладия. Синтез КольбеПри электролизе солей карбоновых кислот, анион кислоты -- RCOO? перемещается к аноду, и там, отдавая электрон превращается в неустойчивый радикал RCOO*, который сразу декарбоксилируется. Радикал R* стабилизируется путем сдваивания с подобным радикалом, и образуется R--R. Например: 2CH3COO? ? 2e > 2[CH3COO*] > 2CH3* > C2H6 2C3H7COOK > {электролиз} > C6H14 Газификация твердого топливаПроходит при повышенной температуре и давлении. Катализатор -- Ni: C+2H2 > CH4 Реакция Вюрца2R--Br + 2Na = R--R + 2NaBr Реакция идёт в ТГФ при температуре ?80 °C. При взаимодействии R и R` возможно образование смеси продуктов (R--R, R`--R`, R--R`) Синтез Фишера -- ТропшаnCO + (2n+1)H2 > CnH2n+2 + nH2O Список использованной литературы · Активация и каталитические реакции алканов / Пер. с англ.; под ред. К. Хилла. -- М.: Мир, 1992. · Петров Ал. А. Химия алканов · Пэрэушану В. Производство и использование углеводородов. -- М.: Химия, 1987. · Рудаков Е. С. Реакции алканов с окислителями, металлокомплексами и радикалами в растворах. -- Киев: Наукова думка, 1985. · Хейнс А. Методы окисления органических соединений. Алканы, алкены, алкины и арены. -- М.: Мир, 1988.
|