БОЛЬШАЯ НАУЧНАЯ БИБЛИОТЕКА  
рефераты
Добро пожаловать на сайт Большой Научной Библиотеки! рефераты
рефераты
Меню
Главная
Банковское дело
Биржевое дело
Ветеринария
Военная кафедра
Геология
Государственно-правовые
Деньги и кредит
Естествознание
Исторические личности
Маркетинг реклама и торговля
Международные отношения
Международные экономические
Муниципальное право
Нотариат
Педагогика
Политология
Предпринимательство
Психология
Радиоэлектроника
Реклама
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
Таможенная система
Физика
Философия
Финансы
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Сельское хозяйство
Социальная работа
Сочинения по литературе и русскому языку
Товароведение
Транспорт
Химия
Экология и охрана природы
Экономика и экономическая теория

Свойства и получение цинка

Свойства и получение цинка

Тема

Цинк

Введение

Элемент цинк (Zn) в таблице Менделеева имеет порядковый номер 30. Он находится в четвертом периоде второй группы. Атомный вес - 65,37. Распределение электронов по слоям 2-8-18-2

Происхождение названия элемента неясно, однако кажется правдоподобным, что оно произведено от Zinke (по-немецки «острие», или «зуб»), благодаря внешнему виду металла.

Цинк представляет собой синевато - белый металл, плавящийся при 419 С, а при 913 С превращающийся в пар; плотность его равна 7,14 г/см3. При обыкновенной температуре цинк довольно хрупок, но при 100-110 С он хорошо гнется и прокатывается в листы. На воздухе цинк покрывается тонким слоем окиси или основного карбоната, предохраняющим его от дальнейшего окисления.

Вода почти не действует на цинк, хотя он и стоит в ряду напряжений значительно левее водорода. Это объясняется тем, что образующаяся на поверхности цинка при взаимодействии его с водой гидроокись практически нерастворима и препятствует дальнейшему течению реакции. В разбавленных же кислотах цинк легко растворяется с образованием соответствующих солей.

Кроме того, цинк подобно бериллию и другим металлам, образующим амфотерные гидроокиси, растворяется в щелочах. Если нагреть цинк на воздухе до температуры кипения, то пары его воспламеняются и сгорают зеленовато-белым пламенем, образуя окись цинка

При нагревании цинк взаимодействуют с неметаллами (кроме водорода, углерода и азота). Активно реагирует с кислотами:

Zn + H2SO4 (разб.) = ZnSO4 + H2

Цинк - единственный элемент группы, который растворяется в водных растворах щелочей с образованием ионов [Zn(OH)4] (гидроксоцинкатов):

Zn + 2OH + 2H2O = [Zn(OH)4] + H2

1. Сырьё для получения цинка

Содержание в земной составляет Zn 2,0 *10-2 %.Цинк обычно содержится в полиметаллических рудах и является спутником свинца и меди.

НИИ «Уралмеханобр» (принадлежит УГМК) разработал технологию извлечения металлизованных окатышей и цинкового концентрата из отходов электросталеплавильного производства. Новый метод позволит металлургам получать недорогое сырье и решать экологические проблемы.

Источником получения цинка является рудное сырье, которое обычно находится в сульфидном состоянии, а цинк представлен преимущественно сфалеритом (ZnS). Руды всегда комплексные, содержат кроме цинка свинец, медь, железо, серебро и др. В последнее время используется вторичное сырье в странах с высоким потреблением.

Сырьем является цинковый концентрат. В качестве исходного материала используют не только минеральное и вторичное, но также и цинкосодержащие продукты других производств: шлаки и пыли металлургических производств свинца, меди, олова, чугуна. Эти продукты гораздо бедней по цинку, чем цинковые концентраты и все же их включают в цинковое сырье. Цинковистые шлаки до недавнего времени считались отвальными продуктами, хотя в них содержится значительное количество цинка, особенно в свинцовых шлаках (10-17% цинка).

Распространение цинка в природе и его промышленное извлечение. Содержание цинка в земной коре составляет 7,6·10-3%, он распространен примерно так же, как рубидий (7,8·10-3%), и чуть больше, чем медь (6,8·10-3%).

Основными минералами цинка являются сульфид цинка ZnS (известный как цинковая обманка или сфалерит) и карбонат цинка ZnCO3

Первое место в мире по добыче (16,5% мировой добычи, 1113 тыс. т, 1995) и запасам цинка занимает Канада. Кроме того, богатые месторождения цинка сосредоточены в Китае (13,5%), Австралии (13%), Перу (10%), США (10%), Ирландии (около 3%).

Добыча цинка ведется в 50 странах. В России цинк извлекается из медноколчеданных месторождений Урала, а также из полиметаллических месторождений в горах Южной Сибири и Приморья. Крупные запасы цинка сосредоточены в Рудном Алтае (Восточный Казахстан), на долю которого приходится более 50% добычи цинка в странах СНГ. Цинк добывают также в Азербайджане, Узбекистане (месторождение Алмалык) и Таджикистане.

Инновационность технологии в том, что она позволяет одновременно получать из отходов цинк и металлическое железо. Раньше такое не удавалось. Суть процесса пояснил заведующий отделом окускования руд и концентратов «Уралмеханобра» Самуил Меламуд: «Пыли вместе со шлаками доменного производства и другие железосодержащие отходы окомковываются и загружаются в специально созданную вращающуюся печь. В ней создается особая атмосфера и режим обжига (именно в них заключается ноу-хау), которые позволяют извлекать цинк и металлизовать имеющееся в окисной форме железо. Цинк улавливается в тканевых рукавных фильтрах, а окатыши охлаждаются, обрабатываются и передаются для металлургического передела».

По подсчетам ученых, в среднем из одной тонны пыли возможно получить 300 -- 350 кг металлического железа и 50 -- 70 кг цинка. Новый способ переработки отходов позволит использовать дешевое вторсырье, снизить затраты на хранение вредных отходов и экологические платежи. В итоге себестоимость получаемого цинка будет на 15 -- 20% ниже его нынешних мировых цен (1,9 тыс. тонн на Лондонской бирже металлов). Срок окупаемости новых установок при объеме 20 -- 30 тыс. тонн переработки в год составляет не более четырех лет.

Сейчас готовится экономическое обоснование целесообразности внедрения технологии на предприятиях УГМК: Металлургическом заводе им. А.К. Серова, Вторцветмете (Сухой Лог), Медногорском медно-серном комбинате. В дальнейшем планируется продавать лицензии на право использования ноу-хау другим меткомпаниям.

Ученые ОАО « Уралмеханобр» (предприятие научного комплекса УГМК) совместно со специалистами УГМК разработали новую для отечественных и зарубежных предприятий черной металлургии технологию по извлечению цинка и железа из пылей электросталеплавильного производства. Инновационность технологии состоит в том, что она позволяет одновременно получать из сырья цинк и металлическое железо, чего ранее не удавалось.

Как сообщил один из авторов разработки, заведующий отдела окускования руд и концентратов ОАО «Уралмеханобр» Самуил Меламуд, технология обеспечивает извлечение металлизованных окатышей и цинкового концентрата путем восстановительного обжига цинкосодержащих пылей. Предварительные результаты показали, что из тонны пылей Металлургического завода им. А.К. Серова можно получить 300-350 кг металлического железа и 50-70 кг цинка.

«Рост затрат на добычу рудного сырья и ломов, ограниченность природных ресурсов и ожидаемое увеличение штрафных санкций за загрязнение окружающей среды закономерно приводит к тому, что промышленники начинают все более серьезно относится к вопросам вторичной переработки техногенных отходов, - говорит Самуил Меламуд. - Тем более что современные технологии уже способны быть экономически выгодными».

В апреле текущего года на Медногорском медно-серном комбинате (Оренбургская область, предприятие металлургического комплекса УГМК) удачно прошли опытно- промышленные испытания новой технологии. В настоящее время готовится экономическое обоснование целесообразности по внедрению технологии на одном из предприятий УГМК

2. Способы получения цинка

При резком охлаждении пары цинка сразу же, минуя жидкое состояние, превращаются в твердую пыль. Часто бывает нужно сохранить цинк именно в виде пыли, а не переплавлять его в слитки.

Цинк в природе как самородный метал не проявляется. Цинк добывают двумя способами :

1) пирометаллургический метод

2) гидрометаллургический метод из полиметаллических руд, содержащих 1-4 % Zn в виде сульфида, а также Cu, Pb, Ag, Au, Cd, Bi. Руды обогащают селективной флотацией, получая цинковые концентраты (50-60 % Zn) и одновременно свинцовые, медные, а иногда также пиритные концентраты. Цинковые концентраты обжигают в печах в кипящем слое, переводя сульфид цинка в оксид ZnO; образующийся при этом сернистый газ SO2 расходуется на производство серной кислоты. От ZnO к Zn идут двумя путями.

1) По пирометаллургическому (дистилляционному) способу, существующему издавна, обожженный концентрат подвергают спеканию для придания зернистости и газопроницаемости, а затем восстанавливают углем или коксом при 1200 -- 1300 °С:

ZnO + С = Zn + CO.

Образующиеся при этом пары металла конденсируют и разливают в изложницы. Сначала восстановление проводили только в ретортах из обожженной глины, обслуживаемых вручную, позднее стали применять вертикальные механизированные реторты из карборунда, затем -- шахтные и дуговые электропечи; из свинцово-цинковых концентратов цинк получают в шахтных печах с дутьем. Производительность постепенно повышалась, но цинк содержал до 3 % примесей, в том числе ценный кадмий. Дистилляционный цинк очищают ликвацией (то есть отстаиванием жидкого металла от железа и части свинца при 500 °C), достигая чистоты 98,7 %. Применяющаяся иногда более сложная и дорогая очистка ректификацией дает металл чистотой 99,995 % и позволяет извлекать кадмий.

Основной способ получения цинка -- электролитический (гидрометаллургический). Обожженные концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах, с которых его ежесуточно удаляют (сдирают) и плавят в индукционных печах. Обычно чистота электролитного цинка 99,95 %, полнота извлечения его из концентрата (при учете переработки отходов) 93-94 %. Из отходов производства получают цинковый купорос, Pb, Cu, Cd, Au, Ag; иногда также In, Ga, Ge, Tl.

2) Гидрометаллургический способ переработки обожженных цинковых концентратов заключается в растворении окиси цинка водным раствором серной кислоты и в последующем осаждении цинка электролизом. Поэтому гидрометаллургический способ называют иногда электролитическим. При производстве цинка электролизом цинковый концентрат предварительно подвергают окислительному обжигу.

ZnSO4> Zn2+ + SO42-

2+ (-) катод Zn , Н2О (+) анод: SO42-, Н2О

2+

Zn + 2e Zn 2H2O - 4e O2 + 4H+

2+ 0

Zn + 2е Zn

2H2O + 2e H2 + 2HO

Суммарное уравнение

ZnSO4 + 2H2O Zn + H2 + O2 + H2SO4.

Полученный огарок выщелачивают отработанным электролитом, содержащим серную кислоту. Получаемый раствор сернокислого цинка очищают от вредных примесей и направляют на электролиз. При этом цинк осаждается на катоде, а в растворе регенерируется серная кислота, возвращаемая вновь на выщелачивание

Если обжиг цинкового концентрата предшествует выщелачиванию, то целью его является возможно более полный перевод сернистого цинка в оксид цинка, растворимую в разбавленных растворах серной кислоты.

Выщелачивание огарка осуществляется отработанным электролитом, содержащим серную кислоту и получаемым при электролизе раствора цинка. В процессе передела неизбежны потери серной кислоты (как механические, происходящие вследствие потери раствора, так и химические, вызванные тем, что серная кислота непроизводительно затрачивается на растворение примесей). Эти потери пополняют тем, что получают в огарке некоторое количество сульфата цинка, легко растворяющегося в воде. Для этой цели достаточно бывает иметь в обожженном концентрате около 2-4% сульфатной серы.

Этим способом получают около 70% всего мирового производства цинка. Объясняется это тем, что электролитическим способом при хорошей механизации трудоемких процессов и высоком проценте извлечения получают цинк более чистый, чем дистилляционным. Кроме того, облегчается возможность комплексного использования ценных составляющих концентрата. Для выделения цинка полученный после обогащения концентрат ZnS подвергают обжигу:

2ZnS+3O2> 2ZnO+2SO2

3. Физические и химические свойства цинка

Физические свойства Цинка. Цинк - металл средней твердости. В холодном состоянии хрупок, а при 100-150 °С весьма пластичен и легко прокатывается в листы и фольгу толщиной около сотых долей миллиметра. При 250 °С вновь становится хрупким. Полиморфных модификаций не имеет. Кристаллизуется в гексагональной решетке с параметрами а = 2,6594Е, с = 4,9370Е. Атомный радиус 1,37Е; ионный Zn2+ -0,83Е. Плотность твердого Цинка 7,133 г/см3 (20 °С), жидкого 6,66 г/см3 (419,5 °С); tпл 419,5 °С; tкип 906 °С. Температурный коэффициент линейного расширения 39,7·10-3 (20-250 °С), коэффициент теплопроводности 110,950 вт/(м ·К) 0,265 кал/см·сек·°С (20 °С), удельное электросопротивление 5,9·10-6 ом·см (20 °С), удельная теплоемкость Цинка 25,433 кдж/(кг·К.) [6,07 кал/(г·°С)]. Предел прочности при растяжении 200-250 Мн/м2 (2000-2500 кгс/см2), относительное удлинение 40-50%, твердость по Бринеллю 400-500 Мн/м2(4000-5000 кгс/см2). Цинк диамагнитен, его удельная магнитная восприимчивость -0,175·10-6.

Химические свойства Цинка. Внешняя электронная конфигурация атома Zn 3d104s2. Степень окисления в соединениях +2. Стандартный электродный потенциал равный -0,76 В характеризует Цинк как активный металл и энергичный восстановитель. На воздухе при температуре до 100 °С Цинк быстро тускнеет, покрываясь поверхностной пленкой основных карбонатов. Во влажном воздухе, особенно в присутствии СО2, происходит разрушение металла даже при обычных температурах. При сильном нагревании на воздухе или в кислороде Цинк интенсивно сгорает голубоватым пламенем с образованием белого дыма оксида цинка ZnO. Сухие фтор, хлор и бром не взаимодействуют с Цинком на холоду, но в присутствии паров воды металл может воспламениться, образуя, например, ZnCl2. Нагретая смесь порошка Цинка с серой дает сульфид Цинк ZnS. Сульфид Цинк выпадает в осадок при действии сероводорода на слабокислые или аммиачные водные растворы солей Zn. Гидрид ZnH2 получается при взаимодействии LiАlН4 с Zn(CH3)2 и других соединениями Цинка; металлоподобное вещество, разлагающееся при нагревании на элементы. Нитрид Zn3N2 - черный порошок, образуется при нагревании до 600 °С в токе аммиака; на воздухе устойчив до 750 °С, вода его разлагает. Карбид Цинка ZnC2 получен при нагревании Цинка в токе ацетилена. Сильные минеральные кислоты энергично растворяют Цинк, особенно при нагревании, с образованием соответствующих солей. При взаимодействии с разбавленной НCl и H2SO4 выделяется Н2, а с НNО3 - кроме того, NO, NO2, NH3. С концентрированной НCl, H2SO4 и HNO3 Цинк реагирует, выделяя соответственно Н2, SO2, NO и NO2. Растворы и расплавы щелочей окисляют Цинк с выделением Н2 и образованием растворимых в воде цинкитов. Интенсивность действия кислот и щелочей на Цинк зависит от наличия в нем примесей. Чистый Цинк менее реакционно способен по отношению к этим реагентам из-за высокого перенапряжения на нем водорода. В воде соли Цинка при нагревании гидролизуются, выделяя белый осадок гидрооксида

a) взаимодействие цинка с разбавленными кислотами

Zn(OH)2. H2SO4 + Zn = Zn SO4 + H2 ^

Цинк, как активный металл, может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу, и даже сероводород.

2H2SO4 + Zn = SO2 ^+ZnSO4 + 2H2O

При взаимодействии цинка с очень разбавленной азотной кислотой выделяется аммиак, который реагирует с избытком кислоты с образованием нитрата аммония.

В общем виде:

4Zn + 10HNO3 = 4Zn(NO3)2 + NH4NO3 + 3H2O

C HNO3

Zn + HNO3 = Zn(NO3)2 +NO +H2O

b)Взаимодействие растворимых солей цинка с щелочами:

ZnCl2 +2NaOH= ZnOH2v+2NaCl

Zn(NO3)2+2KOH = ZnOH2v +2KNO3

Область применения цинка

Металлический цинк используется для восстановления благородных металлов добываемых подземным выщелачиванием (золото, серебро). Кроме того, цинк используется для извлечения серебра, золота и др. Из чернового свинца в виде так называемой «серебристой пены» интерметаллидов цинка с серебром и золотом, и обрабатываемых обычными методами аффинажа.

Применяется для защиты стали от коррозии (оцинковка, которая хорошо известна всем, кто видел оцинкованное ведро). Также используется в качестве материала для отрицательного электрода в химических источниках тока, то есть в батарейках и аккумуляторах.

Очень важна роль цинка в цинк-воздушных аккумуляторах, в последние годы интенсивно разрабатываются на основе системы цинк-воздух аккумуляторы для компьютеров (ноутбуки) и в этой области достигнут значительный успех (большая, чем у литиевых батарей энергия, ресурс и они дешевле в 3 раза), так же эта система очень перспективна для пуска двигателей (свинцовый аккумулятор -- 55 Вт·ч/кг, цинк-воздух -- 220--300 Вт·ч/кг) и для электромобилей (пробег до 900 км). Входит в состав многих твёрдых припоев для снижения их температуры плавления.

Сложный химический и минералогический состав руд, содержащих цинк, был одной из причин, по которым цинковое производство рождалось долго и трудно. При резком охлаждении пары цинка сразу же, минуя жидкое состояние, превращаются в твердую пыль. Это несколько осложняет производство, хотя элементарный цинк считается нетоксичным. Часто бывает нужно сохранить цинк именно в виде пыли, а не переплавлять его в слитки.

В пиротехнике цинковую пыль применяют, чтобы получить голубое пламя. Цинковая пыль используется в производстве редких и благородных металлов. В частности, таким цинком вытесняют золото и серебро из цианистых растворов. Как ни парадоксально, но при получении самого цинка (и кадмия) гидрометаллургическим способом применяется цинковая пыль - для очистки раствора сульфата меди и кадмия.

Главная составная часть применяемой во всех этих случаях краски - все та же цинковая пыль. Смешанная с окисью цинка и льняным маслом, она превращается в краску, которая отлично предохраняет от коррозии. Эта краска к тому же дешева, пластична, хорошо прилипает к поверхности металла и не отслаивается при температурных перепадах. Мышиный цвет скорее достоинство, чем недостаток. Изделия, которые покрывают такой краской, должны быть не марки и в то же время опрятны. На свойствах цинка сильно сказывается степень его чистоты. При 99,9 и 99,99% чистоты цинк хорошо растворяется в кислотах. Но стоит "прибавить" еще одну девятку (99,999%), и цинк становится нерастворимым в кислотах даже при сильном нагревании. Цинк такой чистоты отличается и большой пластичностью, его можно вытягивать в тонкие нити. А обычный цинк можно прокатить в тонкие листы, лишь нагрев его до 100-150 С. Нагретый до 250 С и выше, вплоть до точки плавления, цинк опять становится хрупким - происходит очередная перестройка его кристаллической структуры.

Листовой цинк широко применяют в производстве гальванических элементов. Первый "вольтов столб" состоял из кружочков цинка и меди. И в современных химических источниках тока отрицательный электрод чаще всего делается из цинка.

Значительна роль этого элемента в полиграфии. Из цинка делают клише, позволяющие воспроизвести в печати рисунки и фотографии. Специально приготовленный и обработанный типографский цинк воспринимает фотоизображение. Это изображение в нужных местах защищают краской, и будущее клише протравливают кислотой. Изображение приобретает рельефность, опытные граверы подчищают его, делают оттиски, а потом эти клише идут в печатные машины. К полиграфическому цинку предъявляют особые требования: прежде всего он должен иметь мелкокристаллическую структуру, особенно на поверхности слитка. Поэтому цинк, предназначенный для полиграфии, всегда отливают в закрытые формы. Для "выравнивания" структуры применяют отжиг при 375 С с последующим медленным охлаждением и горячей прокаткой. Строго лимитируют и присутствие в таком металле примесей, особенно свинца. Если его много, то нельзя будет вытравить клише так, как это нужно. Если же свинца меньше 0,4%, то трудно получить нужную мелкокристаллическую структуру. Вот по этой кромке и "ходят" металлурги, стремясь удовлетворить запросы полиграфии.

Также широко в промышленности нашли применения соединения и сплавы цинка.

Оксид цинка применяется в качестве белого пигмента красок, является активатором вулканизации и наполнителем в резиновой промышленности, используется в косметической промышленности и в медицине, как антисептическое и противовоспалительное средство.

Хлорид цинка используется в медицине в качестве антисептика и в виде растворов в соляной кислоте при паянии.

Сульфид цинка применяется в качестве люминофоров в электронно-лучевых трубках.

Заключение

Так как на цинк при обычных условиях не действуют ни кислород воздуха, ни вода, то основная масса цинка расходуется на защитные покрытия железных листов и стальных изделий. Цинк применяют для получения технически важных сплавов: с медью (латуни), алюминием и никелем. Цинк входит также и в состав бронзы

Латунь - это сплав на основе меди, где главным легирующим элементом является цинк (содержание цинка до 50%). Легирующий элемент это элемент, который вводится в металл или металлический сплав для улучшения физико-химических или механических свойств сплава. Содержание цинка в латуни может быть разным. В зависимости от процентного соотношения меди и цинка в латуни, сплавы подразделяют на виды и категории, различающиеся по своим свойствам. Раньше латунь широко использовали в художественных ремеслах и для изготовления научных приборов. Известны, например, великолепные художественные изделия нюнбергских мастеров начала XYI века. Сегодня латунь используется как конструкционный материал там, где требуется высокая прочность и коррозийная стойкость: в трубопроводной арматуре, в химическом машиностроении и особенно в судостроении. Латунь хорошо поддается обработке давлением, поэтому детали из нее часто изготавливают методом глубокой вытяжки. Из латуней делают конденсаторные трубки и патронные гильзы, радиаторы и различную арматуру.

Широко используется и гальваническое цинкование стальных деталей. Оно обладает рядом преимуществ: толщину слоя можно точно регулировать в зависимости от назначения детали; защитное покрытие и основной металл не образуют никаких промежуточных слоев и сплавов, поэтому отпадает необходимость в нагреве. Названный метод цинкования позволяют получать цинковые покрытия толщиной до 0.02-0.1 мм.

В пиротехнике цинковая пыль применяется для получения голубого пламени, применяется цинк и в полиграфии.

Около ј всего производимого в мире цинка расходуется на легирование других металлов, преимущественно на изготовление латуней и других медных сплавов. До 40% мирового производства цинка идет на защиту стали. Механизм защиты железа цинком состоит в том, что цинк - металл более активный - быстрее реагирует с агрессивными компонентами атмосферы.

Большое применение находят и некоторые соединения цинка. Так, оксид цинка ZnO, замешанный на олифе, дает цинковые белила - самые распространенные из всех белил. Препараты на основе оксида цинка эффективны при кожных заболеваниях. В древности лекарства с цинком использовали для заживления ран и при лечении глазных болезней. Другое важное соединение цинка - сульфид цинка - ZnS - применяют для покрытия светящихся экранов телевизоров, осциллографов, рентгеновских аппаратов. Под действием коротковолнового излучения или электронного луча ZnS способен светиться, причем эта способность сохраняется и после того, как прекращается облучение.

Цинк важен и для организма человека. Так, люди с дефицитом цинка обычно часто и длительно болеют простудными и инфекционными заболеваниями. Дефицит цинка в организме характеризуется наличием следующих симптомов: понижение аппетита, аллергические заболевания, дерматит, дефицит массы, снижение остроты зрения, выпадение волос. При дефиците цинка у детей и подростков возрастает предрасположенность к алкоголизму.

Цинк встречается в природе преимущественно в соединении с серой. Поэтому для его получения в свободном состоянии руду обжигают и из оксида восстанавливают металл:

12з 2з

+2 -2 0 t +2 -2 +2 -2 +2 0 t 0 +2

2 ZnS + 3O2 2 ZnO + 2SO2 ZnO + C Zn + CO

Список используемых источников

1. Лит.: Лакерник М.М., Пахомов а Г. Н., Металлургия ЦИНКА и кадмия, М., 1969; Живописцев В.П., Селезнева Е. А.,

2. Аналитическая химия цинка, М., 1975; Зайцев В.Я., Маргулис Е. В.,

3. Металлургия свинца и цинка, М., 1985;

4. Популярная библиотека химических элементов. М., Наука, 1977





17.06.2012
Большое обновление Большой Научной Библиотеки  рефераты
12.06.2012
Конкурс в самом разгаре не пропустите Новости  рефераты
08.06.2012
Мы проводим опрос, а также небольшой конкурс  рефераты
05.06.2012
Сена дизайна и структуры сайта научной библиотеки  рефераты
04.06.2012
Переезд на новый хостинг  рефераты
30.05.2012
Работа над улучшением структуры сайта научной библиотеки  рефераты
27.05.2012
Работа над новым дизайном сайта библиотеки  рефераты

рефераты
©2011