Теорія електролітичної дисоціац
Теорія електролітичної дисоціац
9 Теорія електролітичної дисоціації Більшість хімічних реакцій, які використовуються у якісному аналізі, протікають у водних розчинах. Якщо речовина розчиняється у воді чи іншому розчиннику, то утворюється однорідний гомогенний розчин. Розчини не можна розглядати як прості механічні суміші. Процес розчинення завжди супроводжується виділенням чи поглинанням теплоти. Водні розчини деяких речовин є провідниками електричного струму. Ці речовини належать до електролітів. Електролітами є кислоти, солі та луги. Багато речовин виявляють властивості електролітів у розплавленому стані. Електрична провідність розчинів і розплавів електролітів зумовлена наявністю у розчині негативно та позитивно заряджених іонів, які утворюються з молекул або криста-лічних речовин. Уявлення про утворення іонів у розчинах електролітів утвердилося в хімії в першій половині XIX ст. завдяки працям англійського фізика і хіміка М. Фара-дея. Процес розщеплення електролітів на іони у водних розчинах і розплавах називається електролітичною дисо-ціацією. Розчини деяких речовин у воді не проводять електрич-ний струм. Такі речовини називаються неелектролітами. Неелектролітами є багато органічних сполук, на-приклад сахари, спирти. Теорія електролітичної дисоціації для водних розчинів була сформульована шведським ученим С. Арреніусом у 1887 р. Розглянемо основні положення цієї теорії. При розчиненні у воді молекули електролітів дисоціюють (розщеплюються) на позитивно і негативно заря-джені іони. Іони можуть бути утворені з одного атома - прості іони ( Na+, Cl- ) і кількох атомів - складні іони (). Дисоціація - оборотний процес. Як правило, він не відбувається до кінця, а в системі встановлюється ди-намічна рівновага, тобто такий стан, при якому швидкість дисоціації дорівнює швидкості зворотного процесу - утво-рення вихідних молекул. Тому у рівняннях дисоціації замість знака „ дорівнює ” ставлять знак оборотності, наприклад: Іони у водному розчині перебувають у хаотичному безперервному русі. Якщо у розчин електроліту занурити електроди і прикласти до них електричну напругу, то іони набудуть направленого руху: позитивно заряджені іони переміщуватимуться у напрямі до катода ( негативно зарядженого електрода ), а негативно заряджені іони у напрямку анода ( позитивно зарядженого електрода ). Іони також одержали назви: позитивні іони - аніони, а негативні - катіони. Теорія С. Арреніуса не пояснює причин електролітичної дисоціації, вони були встановлені пізніше. Розглянемо електролітичну дисоціацію речовин з іон-ним і полярним ковалентним зв'язком. Припустимо, що у воду помістили кристали хлориду натрію NаСІ - речо-вини з іонним зв'язком. Полярні молекули води електростатично притягуються позитивно зарядженими кінцями до негативно заряджених іонів С1- у хлориді натрію, а не-гативно зарядженими кінцями - до позитивно зарядже-них іонів Na+ ( див. рис. 1 ). Рис. 1. Схема дисоціації хлориду натрію у водному розчині Внаслідок такої взаємодії іонів з диполями води послаблюється зв'язок між іонами кри-стала, і вони переходять у розчин у вигляді гідратованих іонів. Уявлення про гідратацію іонів, тобто про виникнення хімічного зв'язку між іонами і молеку-лами води, введено російським вченим І. О. Каблуковим і стало розвитком хімічної теорії розчинів. У неводних розчинниках також можлива електро-літична дисоціація з утворенням соль ватованих іонів. Гідратації зазнають всі іони у водних розчинах, у тому числі й іони водню, які можуть утворювати хімічні зв'яз-ки з однією, двома і більшим числом молекул води. Зви-чайно гідратовані іони водню зображують формулою Н3О+ ( точніше, Н3О+ Ч nН2О, де n = 0...4 ) і називають іоном гідроксонію. На рис. 2 зображено схему розщеплення молекули хлороводню з полярним ковалентним зв'язком. При взає-модії полярної молекули НС1 з диполями води відбуває-ться розрив зв'язку між атомами водню і хлору, і молекула набуває іонної структури. Потім молекула із іонним зв'язком розщеплюється на окремі гідратовані іони. Рис. 2 Схема дисоціації молекули хлороводню у водному розчині Для кількісної характеристики електролітичної дисоціації введено поняття ступінь дисоціації, який дорівнює відношенню кількості речовини електроліту, що розщепився на іони, до загаль-ної кількості речовини цього електроліту, введеного в розчин: Ступінь дисоціації - безрозмірна величина, його ви-ражають у частках одиниці або в процентах. При повній дисоціації електроліту на іони щ= 1, або 100 %. Для неелектролітів, які не дисоціюють на іони, щ = 0. Ступінь дисоціації залежить від концентрації електро-літу і температури. З теорії електролітичної дисоціації випливає, що чим менша концентрація електроліту в роз-чині, тим більший ступінь дисоціації. При безкінечному розбавлянні розчину ступінь дисоціації наближається до 1 (100 %). Наприклад, ступінь дисоціації гідроксиду нат-рію NаОН залежно від концентрації електроліту змінює-ться так: для розчину з концентрацією с=1 моль/л щ = 0,73 (18°С), для с = 0,1 моль/л щ =0,84 і для с = 0,01 моль/л щ = 0,95. Залежно від ступеня електролітичної дисоціації всі електроліти поділяють на сильні та слабкі. Такий поділ досить умовний, оскільки ступінь дисоціації залежить від температури розчину, концентрації електроліту, і внаслідок цього може змінюватися у досить широких межах. Слабкі електроліти - це речовини, які лише частково дисоціюють на іони. Із неорганічних сполук до них належить вода, пероксид водню, деякі неорганічні кислоти, як, наприклад, вугільна Н2СО3. Силу електроліта зручно характеризувати за допомогою константи дисоціації: Якщо електроліт дисоціює ступінчато, то константу дисоціації слід записати для кожного ступеня дисоціації. Виходячи із значень константи дисоціації можна визначати та порівнювати силу електролітів, чим менше Кд тим електроліт слабший і навпаки. Для слабких електролітів між константою та ступенем дисоціації існує зв'язок, який для розбавлених розчинів можна виразити формулою: , де с - молярна концентрація електроліту. Сильні електроліти практично повністю дисоційовані на іони. До них відносять майже всі неорганічні кислоти ( сульфатна, нітратна, хлоридна ) та їх розчинні солі, луги. Електростатична взаємодія із утворенням іонних пар зменшує реальну концентрацію іонів у розчині, а отже ступінь дисоціації електроліту менший за 100 %. Ступінь дисоціації сильного електроліту. Який визначають експериментально називають уявним ступенем дисоціації. Тому замість концентрації використовують активність. Активність - це ефективна концентрація іонізованої частини електроліту в розчині, визначена із врахуванням взаємодії іонів: , де - це коефіцієнт активності речовини, який враховує сили взаємодії іонів, значення, якого завжди менше або дорівнює одиниці. П. Дебай та Г. Гюккель встановили, що в розведених розчинах сильних електролітів логарифм коефіцієнта активності пропорційний кореню квадратному із його іонної сили: , де А - це стала, яка залежить від зарядів іонів, температури та діелектричної проникності розчинів. Поняття про іонну силу розчину ввели Г. Люїс та Рендель. Згідно із законом іонної сили коефіцієнт активності в розбавлених розчинах залежить не від природи електроліту, а тільки від величини іонної сили розчину. У різних електролітів із однаковими значеннями іонної сили коефіцієнти активності будуть однакові. Величина іонної сили І визначається як напівсуха добутків концентрацій іонів С на квадрати їх валентностей z: Теорія розчинів електролітів розвивається і у наш час. В аналітичній хімії більшість хімічних реакцій проводять у розчинах. Для вираження вмісту аналізованої речовини у розчинах використовують поняття концентрації. Концентрація - це величина, яка характеризує вміст речовини у певному об'ємі її розчину. Виділяють моляльну, молярну, нормальну концентрації. Але найчастіше в аналітичній хімії використовують нормальну концентрацію ( нормальність ). Вона показує скільки еквівалентів речовини міститься в 1 л. розчину. Широке використання нормальності пов'язано із використанням її у розрахунках титраметричного аналізу. Список використаної літератури. 1. Глинка Н. Л. Общая химия. - Л.: Химия, 1988. - 702 с. 2. Гончаров А. І., Корнілов М. Ю. Довідник з хімії. - К.: Вища школа, 1974. - 303 с. 3. Рабинович В. А., Хавин З. Я. Краткий химический справочник. - Л.: Химия, 1978. - 331 с. 4. Хомченко І. Г. Загальна хімія. - К.: Вища школа, 1993. - 420 с. 5. Щукарев С. А. Неорганическая химия. - М.: Высшая школа, 1970. - 437 с. 6. Полеес М. Э. Аналитическая химия. - М.: Медицина, 1981. - 286 с. 7. Крешков А. П., Ярославцев А. А. Курс аналитической химии. - М.: Химия, 1964. - 430 с. 8. Мороз А. С., Ковальова А. Г. Фізична та колоїдна хімія. - Львів : Світ, 1994. - 278 с. 9. Артеменко А. И., Тику нова И. В., Ануфриев Е. К. Практикум по органической химии. - М.: Высшая школа, 1991. - 175 с.
|